
Supplementary Material

Progressive Unsupervised Learning for Visual Object Tracking

Qiangqiang Wu Jia Wan Antoni B. Chan

Department of Computer Science, City University of Hong Kong

qiangqwu2-c@my.cityu.edu.hk, jiawan1998@gmail.com, abchan@cityu.edu.hk

In this supplementary material, we provide additional vi-

sualization, derivations and implementation details. Section

A shows the mini-batch training samples selected by the

proposed anchor-based hard negative mining (AHM) strat-

egy. Section B contains detailed derivations of 2nd-order

Taylor Approximation for the expectation. We qualitatively

compare the proposed AHM with the original random selec-

tion for contrastive learning in Section C. More qualitative

and quantitative results are given in Section D to demon-

strate the robustness of our proposed noise-robust (NR) loss

to observation noise. We further show the qualitative track-

ing results and failure cases in Section E. Finally, we discuss

the additional implementation details in Section F.

A. Mini-batch Samples Selected by AHM

Fig. 1 shows the samples (without applying data aug-

mentation) selected by the proposed AHM. With AHM, the

anchor sample (the top-left sample shown in Fig. 1) with

close nearest neighbors can be selected. We use the selected

anchor sample and its nearest neighbors as one mini-batch

training samples for more challenging contrastive learning,

which facilitates the model to identify hard negative distrac-

tors.

B. Detailed 2nd-order Taylor Approximation

In this subsection, we detail the derivations of 2nd-order

Taylor approximation in Section 3.4.2. As described in

the paper, by applying a 2nd-order Taylor approximation

to exp, we have:

log p(m) ≈ log(1 + Eǫ[g(ǫ)] +
1

2
Eǫ[g(ǫ)

2]). (1)

Note that we define the following notation in the paper:

m1(x) = m(x), m0(x) = 1−m(x),

h1(x) = log f(x), h0(x) = log(1− f(x)),
(2)

and thus g(ǫ) =
∑

x

∑

b∈{0,1} mb(x)hb(x). By substitut-

ing into the first expectation Eǫ[g(ǫ)], yielding:
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For the 2nd expectation,
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where Vb,b′ is a 2nd-moment matrix,

Vb,b′(x,x
′) = Eǫ[mb(x)mb′(x

′)]. (5)

C. Comparison with Random Selection

We visualize the samples selected by our proposed AHM

and the original random selection strategy (RSS) in Fig. 2.

Our AHM tends to select very similar mini-batch samples

(see Fig. 1), while RSS chooses random samples for con-

trastive learning, which causes the denominator in the con-

trastive loss (Eq. 4 in the paper) to be relatively small, es-

pecially when using a small batch size. In the original

contrastive learning task [2], RSS is commonly used with



Figure 1: Example mini-batch training samples (without applying data augmentation) selected by our AHM for contrastive learning. The top-left patch is

the anchor sample.
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Figure 2: Partial example mini-batch training samples selected by the random selection strategy for contrastive learning.

a large batch size (e.g., 8192), which guarantees that rich

negative samples are selected and the denominator in the

contrastive loss is large enough for more effective learning.

However, using a large training batch size is not memory-

friendly. To alleviate this issue, we propose to select hard

negative samples for more effective contrastive learning

even with a relatively small batch size.

D. Robustness to Observation Noise

Fig. 3 shows the comparison between our proposed NR

loss and the original BCE loss with different noise levels.

Note that the experimental setting are kept the same as the

original experiment in Section 4.2.2. In Fig. 3, the pro-

posed NR loss can well handle different levels of observa-

tion noises, and meanwhile it performs better than the BCE

loss for noisy sample learning. We further make the com-

parison between the two losses with more noisy samples in

Fig. 4. Even with a very large noise (i.e., 50 pixels), the

tracking model learned with the proposed NR loss can ef-

fectively track the objects, while the BCE loss fails to learn

a robust tracking model from these noisy samples.

In Fig. 6, we report additional tracking results when

training with various amounts of spatial annotation noise

using traditional binary cross entropy (BCE) loss and our

noise-robust loss (as in Section 4.2.2). When no noise is
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Figure 3: Visualization of response maps and tracking results predicted from models trained with different loss functions and noise levels. The noisy GT

bounding box and true GT position are denoted as cyan and blue colors. The results obtained by our proposed NR loss and the original BCE loss are

represented as red and green colors.
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Figure 4: Noise = 50: visualization of response maps and tracking results predicted from models trained with different loss functions. The noisy GT

bounding box and true GT position are denoted as cyan and blue colors. The results obtained by our proposed NR loss and the original BCE loss are

represented as red and green colors.

added (Noise=0) to the original training dataset of SiamFC,

our noise-robust loss achieves better performance than the

BCE loss, mainly because the spatial annotation noise nat-

urally exists in the manually labeled dataset (i.e., ILSVRC-

2015 [5]). The performance gap increases as the amount

of spatial annotation noise increases. For example, when

Noise=50, our NR-loss can outperform the BCE loss with a

relative gain of 5.7% in terms of AUC, which demonstrates
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Figure 5: A qualitative comparison of our proposed unsupervised ResPUL and AlexPUL trackers with the supervised baseline trackers on 10 challenging

video sequences from the VOT2016 dataset [3]. The sequences from left to right and top to down are Basketball, Blanket, Butterfly, Dinosaur, Fernando,

Glove, Racing, Soldier, Motocross1 and Motocross2.
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Figure 6: Tracking results (AUC) when training with different amounts of

spatial annotation noise (in pixels) using traditional binary cross entropy

(BCE) loss and our noise-robust loss.

that our NR-loss better handles the spatial annotation noise.

E. Qualitative Tracking Results

Qualitative comparison. We show the qualitative com-

parison of our proposed unsupervised ResPUL and Alex-

PUL trackers with the supervised baseline trackers in Fig. 5.

In some cases, our unsupervised trackers can even achieve

more accurate online tracking than the supervised baselines.

For example, in the Butterfly video, SiamDW tends to track

a larger region around the butterfly, which also contains the
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Figure 7: Failure cases of the proposed unsupervised ResPUL and Alex-

PUL trackers. The two sequences from top to down are Graduate and

Fish1 from the VOT2016 dataset.

redundant background part, while siamFC only tracks the

partial butterfly. In comparison, our AlexPUL and ResPUL

trackers can track the butterfly well even the target has large

deformation, due to the good generalization ability of the

learned unsupervised representations.

Failure cases. Two failure cases of the proposed unsuper-

vised ResPUL and AlexPUL trackers are given in Fig. 7.

In the Graduate sequence, the man gradually ran closer to

the camera with large appearance variations. Our ResPUL

tracker fails at the 222-th frame, which is mainly because

that the man undergoes significant deformation and mean-



while one similar object appears. This drift problem can be

effectively addressed by applying an online updating model.

In the Fish1 sequence, our AlexPUL tracker suffers from the

similar failure at the 108-th frame due to the lack of online

updating. Additionally, the scale of the fish changes a lot

at the 215-th frame, and our trackers cannot accurately esti-

mate the scale. It should be noted that the scale estimation

is one main limitation in our baseline trackers SiamFC [1]

and SiamDW [6]), since they do not have a scale estimation

branch [4] for more accurate bounding box prediction. This

problem can be effectively alleviated by applying a scale

estimation branch in our baseline trackers.

F. Implementation Details

We discuss additional implementation details in this sec-

tion. The proposed PUL framework uses several common

data augmentation operations to create augmented training

samples, including random stretch (i.e., widely used in orig-

inal SiamFC [1]), random color distortions, random Gaus-

sian blur, random horizon flip and random gray scale. In the

temporal correspondence (TC) learning, the contrastive loss

is calculated using the template patches (127×127) in the

sampled mini-batch patch pairs. The size of the searching

patch is the same as the crop size used in original SiamFC

[1] and SiamDW [6], which is 255×255.

Our method is implemented using Python 3.7 and Py-

Torch 1.2.0. The experiments are conducted on a PC with an

i7-4.0 GHz CPU and a single GeForce RTX 2080 Ti GPU.

The tracking speed of our proposed AlexPUL and ResPUL

trackers is the same as our baseline trackers (i.e., SiamFC

and SiamDW), which can achieve above real-time speed.
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