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Abstract

Previous work [40] shows that a better density map rep-
resentation can improve the performance of crowd count-
ing. In this paper, we investigate learning the density map
representation through an unbalanced optimal transport
problem, and propose a generalized loss function to learn
density maps for crowd counting and localization. We prove
that pixel-wise L2 loss and Bayesian loss [29] are special
cases and suboptimal solutions to our proposed loss func-
tion. A perspective-guided transport cost function is further
proposed to better handle the perspective transformation in
crowd images. Since the predicted density will be pushed to-
ward annotation positions, the density map prediction will
be sparse and can naturally be used for localization. Fi-
nally, the proposed loss outperforms other losses on four
large-scale datasets for counting, and achieves the best lo-
calization performance on NWPU-Crowd and UCF-QNRF.

1. Introduction

Crowd counting and localization draw increasing atten-
tion recently because of its practical usage in surveillance,
transport management and business. Most of the algorithms
predict a density map from a crowd image, where the sum-
mation of the density map is the crowd count [41, 4]. A
density map (a smooth heat map) is an intermediate repre-
sentation of the crowd – one popular method to generate the
ground-truth density map is to place a Gaussian kernel on
each person’s dot annotation. The density map estimator is
then trained as a standard pixel-wise regression problem us-
ing L2 loss [12, 40] (see Fig. 1a). In contrast to pixel-wise
L2 loss, Bayesian loss (BL) [29] generates an aggregated
dot prediction from the density map prediction, and uses a
point-wise loss function between the ground-truth dot an-
notations and the aggregated dot prediction (see Fig. 1b).

Both L2 and BL assume a fixed ground-truth repre-
sentation, either Gaussian density kernels for L2 or Gaus-
sian likelihoods for BL. Recent works [40, 43] have shown
that the intermediate density map representation affects the
counting performance, and a better density map representa-
tion can be learned in an end-to-end manner from the dot-

pixel loss

fix transport

fix transport

point loss

prediction

prediction

density map dot annotations

dot annotationsdot prediction

optimal transport

transport loss + pixel loss + point loss

prediction dot annotations

L2

BL

ours

(a)

(b)

(c)

Figure 1: Loss functions for counting: (a) L2 loss generates density map
as the supervision and uses a pixel-wise loss function. (b) Bayesian loss
(BL) [29] computes an aggregated dot prediction and uses a point-wise
loss function. We show that L2 and BL are related to an optimal transport
problem using a suboptimal transport matrix. (c) Our proposed loss is
based on unbalanced optimal transport, where the transport cost is fully
minimized and both the pixel-wise and point-wise losses are considered.

annotations. However, [40, 43] still use L2 loss for train-
ing, which is not appropriate in suppressing background and
improving localization. In particular, with L2 loss, a unit
change in density in background regions (which is a large
localization error) is equivalent to a unit change in density
near a dot annotation (which is a small localization error).
Thus the L2 loss function is not ideal for localization or gen-
erating compact density maps, and we should prefer a loss
function that has an increased penalty for errors far from the
annotations, so as to improve localization and compactness.

Considering both motivations of learning the density
map representation and using localization-sensitive loss, we
propose a generalized loss function based on an unbal-
anced optimal transport (OT) framework, which measures
the transport cost between the predicted density map and the
ground-truth dot annotations (see Fig. 1c). We show that the
transport matrix, which is optimized to minimize the loss, is
related to the intermediate density map representation. To
better handle perspective changes in the image, we propose
a perspective-guided transport cost function to better sepa-
rate the density around people who are close together due
to the camera perspective. The proposed loss function de-
composes into four terms: 1) a transport loss that pushes the
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predicted density toward annotations; 2) a transport regular-
ization term that prevents collapse onto a single annotation;
3) a pixel-wise loss that measures the difference between
the predicted density map and the constructed density map
(from the transport matrix); 4) a point-wise loss that ensures
that all annotations are accounted for in the predicted den-
sity map. We further show that our proposed loss is a gen-
eralization of the traditional L2 loss with Gaussian density
kernel and BL, i.e., they are special cases and suboptimal
solutions to the unbalanced OT in our proposed loss.

Compared to previous losses, our proposed loss function
has four advantages: 1) the density map representation is
learned via the optimized transport matrix; 2) it does not
require any special design for background regions (such as
[29, 42]), and naturally pushes predicted density away from
the background and towards the annotations; 3) it produces
compact density maps that can be naturally used for local-
ization; 4) it is less sensitive to the blur factor hyperparam-
eter (which is equivalent to the Gaussian kernel variance).
In summary, the contributions of the paper are four-fold:

1. We propose a generalized loss function, motivated by
unbalanced optimal transport theory, for crowd count-
ing and localization. We prove L2 and BL are special
cases and suboptimal solutions of our loss function.

2. To handle perspective effects in crowd images, we
propose a perspective-guided transport cost, which in-
creases transport costs of density far from the camera,
thus making densities in those regions more compact.

3. In extensive experiments on crowd counting, using our
loss achieves better performance than traditional loss
functions on three large-scale datasets, NWPU-Crowd,
JHU-CROWD++, and UCF-QNRF.

4. Our low-resolution predicted density maps (1/8 image
size) achieve the best localization performance on two
large benchmarks NWPU-Crowd and UCF-QNRF.

2. Related Works
Traditional crowd counting Traditional methods count
the number of people in an image by detecting human bod-
ies [18] or body parts [20], which does not work well for
images with high crowd density. Thus, direct regression
methods are proposed based on low-level features [4, 5, 12].
Density map based counting Most of recent methods use
a deep neural network (DNN) to predict density maps [42]
from crowd images, where the sum over density map is the
crowd count [19]. The DNN is trained using L2 pixel-wise
loss. Various DNN structures are proposed to address scale
variation [50, 33, 15], to refine the predicted density map
[30, 31, 35], and to encode context information [36, 47]. To
improve the generalization ability, [49] proposes a cross-
scene crowd counting method. [46] proposes a synthetic
dataset and a domain adaptation method to adapt DNNs
trained from synthetic data to real images. [7] focuses on

semantic consistency across different domains. Since the la-
beling of crowd images is time-consuming, semi-supervised
and weakly-supervised methods are proposed. [26] pro-
poses a ranking loss to utilize unlabeled data, while [38]
proposes a Gaussian Process-based iterative model with
limited labeled data. [28] proposes to learn generic features
with self-training on surrogate tasks. Active learning is also
used for crowd counting with limited supervision [51].

Loss functions Although most of the crowd counting
methods use L2 norm as the loss function, L2 loss is sen-
sitive to the choice of variance in the Gaussian kernel [40].
Therefore, Bayesian loss (BL) [29] is proposed with point-
wise supervision. However, BL cannot well handle false
positives in the background, and requires a special design
for the background region. [41] proposes a generative
model for spatial noise in dot annotations, and derives a
novel loss function that is robust to annotation noise.

The most related work to ours is the concurrent work of
DM-count [44], which considers density maps and dot maps
as probability distributions, and uses balanced OT to match
the shape of the two distributions. The DM-count loss is
composed of three terms: the OT loss, a total variation (TV)
pixel-wise loss, and a counting loss. There are four key dif-
ferences between our work and DM-count. First, DM-count
normalizes the density map predictions and the dot map to
compute the balanced OT between them. Since normal-
ization removes the actual count in the two maps, an addi-
tional counting loss is required to ensure that the count (i.e.,
the sum of the density map) is predicted correctly. How-
ever, this counting loss provides poor supervision, since
its gradient adds the same constant value to all pixels (see
Supp. A). In contrast, our proposed loss is based on un-
balanced OT, which preserves the count of the prediction
and GT dot annotations – any mismatch in counts is penal-
ized by our pixel-wise and point-wise loss terms, which give
direct pixel-wise supervision on the erroneous predictions.
Second, the TV loss used in DM-count is a pixel-wise loss
between the normalized density map prediction and the nor-
malized dot map, which is prone to over-fitting especially
for the localization task. In contrast, our work contains a
pixel-wise loss between the predicted density map and op-
timized constructed density map (via the transport matrix),
which is less prone to over-fit. Third, we show that our
loss is a generalization of other loss functions (L2 and BL)
when a sub-optimal fixed transport matrix is used. Fourth,
DM-count uses the standard squared Euclidean distance as
the transport cost, while our work uses a perspective-guided
transport cost to increase the separation between people’s
density in crowded regions, which improves localization.
We compare our loss with DM-count in the ablation study.

Crowd Localization To perform counting, density map
estimation and localization simultaneously, [13] proposes a
composition loss function. [23] proposes to localize crowd



locations by a recurrent zooming network, while [22] pro-
poses a detection-based method with RGB-D data. [32]
propose to count, localize, and estimate head size simul-
taneously. [45] proposes a large-scale benchmark for crowd
counting and localization. These works use pixel-wise
losses, which are sensitive to the kernel bandwidth. In con-
trast, our loss pushes density towards annotation and is less
sensitive to the bandwidth, and thus robust for localization.

3. A Generalized Loss Function for Crowd
Counting and Localization

Recent work [40] shows that learning the intermediate
density map representation yields improved performance in
counting networks, which suggests the importance of di-
rectly using the ground-truth (GT) dot annotations for su-
pervision, rather than a fixed GT density map. However,
[40] uses L2 pixel-wise loss for training, which is not ap-
propriate since small changes in background density (which
are large localization errors) are equivalent to small changes
in density over a person (which are small localization er-
rors). Thus a loss function that penalizes the distance of
the error to the annotation is preferred, as in optimal trans-
port (OT) cost between the predicted density map and the
dot annotations. Note that the predicted density map and
GT dot annotations may not have the same count, due to
mis-predictions, or annotation noise (missing/duplicate an-
notations). Considering these issues, we propose to use un-
balanced optimal transport (UOT) as the loss function for
training. This loss function both learns the density map rep-
resentation (uses dot annotations as supervision), and han-
dles count mismatches between the prediction and GT.

3.1. Generalized loss function

Formally, let the predicted density map be A =
{(ai,xi)}ni=1, where ai is the predicted density of pixel
xi ∈ R2 and n is the number of pixels. We denote a = [ai]i
as the predicted density map. The ground-truth dot map is
B = {(bj ,yj)}mj=1, where yj is the location of the j-th an-
notation, m is the number of annotation points, and bj is
the number of people represented by the annotation. In this
paper, we assume b = [bj ]j = 1m.

Our loss function is based on the entropic-regularized
unbalanced optimal transport cost,
LτC(A,B) = min

P∈Rn×m+

〈C,P〉 − εH(P)

+ τD1(P1m|a) + τD2(P>1n|b).

(1)

C ∈ Rn×m+ is the transport cost matrix, whose entry Cij
measures the cost of moving the predicted density at xi to
GT dot annotation yi via the cost function Cij = c(xi,yj).
P is the transport matrix, which (fractionally) assigns each
each location xi from A to yi from B for measuring the
cost. The optimal transport cost is obtained by minimizing
the loss over P. Note that â = P1m is the construction

0 2 4 6 8
x

0

2

4

6

8

y

b0

b1

0 2 4 6 8
x

0

2

4

6

8

y

0 20 40 60 80
pixel

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Tr
an

sp
or

t v
al

ue

b0
b1

0 2 4 6 8
x

0

2

4

6

8

y

b0

0 2 4 6 8
x

0

2

4

6

8

y

b1

0 2 4 6 8
x

0

2

4

6

8

y

b0

b1

(a)

0 2 4 6 8
x

0

2

4

6

8

y

(b)

0 20 40 60 80
pixel

0.00

0.02

0.04

0.06

0.08

0.10

Tr
an

sp
or

t v
al

ue

(c)
b0
b1

0 2 4 6 8
x

0

2

4

6

8

y

b0

(d)

0 2 4 6 8
x

0

2

4

6

8

y

b1

(e)

Figure 2: The relationship between density map, annotations, and transport
matrix: (top) optimal transport; (bottom) fixed transport from Bayesian
loss [29]. (a) predicted density maps with 81 pixels and 2 annotations; (b)
transport matrix P ∈ R81×2, where the arrow length represents the trans-
port value, and the direction points to the assigned annotation; (c) columns
of P; (d,e) the transport plan for annotation b0 and b1, reshaped to a map,
equivalent to the ground-truth density map for each annotation. The fixed
transport (bottom) assigns false positives in the background to annotations,
while the optimal transport (top) only considers nearby density. The opti-
mal transport is more sparse, which is better for localization.

of a intermediate density map representation from the GT
annotations, while b̂ = P>1n is the reconstruction of the
GT dot annotations. See Fig. 2 (top) for an example.

The loss function decomposes into four terms. The first
term 〈C,P〉 is the transport loss, which encourages predic-
tion of density values near the annotations; it pushes the
predicted density towards the annotation during training.
The second term H(P) = −

∑
ij Pij logPij is the entropic

regularization term, which favors partial transports between
locations, resulting in spread-out (less compact) density
maps. Larger values of ε will yield less compact predicted
density maps, and vice-versa. The third term D1(P1m|a)
is the pixel-wise loss between the predicted density map a
and the constructed intermediate density map representation
â = P1m, i.e., the “ground-truth” density map. Finally, the
fourth term D2(P>1n|b) is the point-wise loss between the
reconstructed annotations b̂ = P>1n and the GT annota-
tions. The last two terms are complementary – the pixel-
wise term D1 ensures that all predicted density values have
a corresponding annotation, while the point-wise term D2

ensures that all GT annotations are accounted for (used in
the transport plan). In other words, any predicted density
that is not associated with an annotation is penalized, and
any annotation that is not used is penalized.

In our implementation, we use squared L2 norm for the
pixel-wise term and L1-norm for the point-wise term,

D1(P1m|a) = ‖P1m − a‖22, (2)

D2(P>1n|b) = ‖P>1n − b‖1. (3)
In Sec. 4, we show that L2 and BL are suboptimal solutions
to our proposed generalized loss function, which use a fixed
intermediate representation (i.e., transport matrix).

3.2. Perspective-Guided Transport Cost

We next propose a transport cost function for crowd
counting. A typical cost function is the squared Euclidean
distance between the two points, L2

ij = ‖xi − yj‖22, which
considers all distances equally throughout the image. How-



ever, due to the perspective effect in crowd images, people
that are farther from the camera will appear closer together
in the image, while those closer to the camera will be farther
apart in the image. In order to keep the density of people in
the “far” crowds from leaking together, the transport costs
for those regions in the image should be higher, which will
make the density for those people more compact.

To encode perspective information in crowd images, a
perspective-guided cost function is proposed to have larger
penalty for the transport of density far from the camera. For-
mally, the cost function is defined as:

Cij = exp( 1
η(xi,yj)

‖xi − yj‖2), (4)

where η(xi,yj) is an adaptive perspective factor, which is
mapped between an interval based on the average height
1
2 (hxi +hyj ), where hx ∈ [0, 1] refers to normalized height
of the pixel x in the image. We use the exponential in (4)
to enhance the cost of moving densities over long distances,
which makes the predicted density maps more compact.

3.3. Optimization of transport matrix

As shown in [1], the solution to (1) for the optimization
of transport matrix P is unique, and has the form

P = diag(u)Kdiag(v), K = exp(−C/ε), (5)
where K is the Gibbs kernel constructed from the cost ma-
trix C, and exp is element-wise exponential. For the opti-
mization of P in (1), we approximate D1 and D2 with KL
divergence, since this yields an efficient algorithm.1 The
u,v are computed with the generalized Sinkhorn iterations,

u(`+1) =
(

a
Kv(`)

) τ
τ+ε , v(`+1) =

(
b

K>u(`+1)

) τ
τ+ε , (6)

where the division and exponent operations are element-
wise. To compute network gradients, the optimal v∗ is
considered as a constant, and u∗ is a function of a, i.e.,
P = diag(u∗(a))Kdiag(v∗).

3.4. Density map counting and localization

To apply our loss function to density map counting, we
learn a density map estimator f(I), whose input is the im-
age I, and output is the density map vector a. The predicted
density map A, together with the corresponding GT anno-
tations B, are fed into the loss function in (1). To compute
the loss, the transport matrix P is optimized for each input
separately using (5) and the iterations in (6). Given the test
image, the density map estimator predicts the density map,
which is then summed to obtain the count.

We perform localization by applying simple post-
processing to the predicted density map a. First, a is up-
sampled to the image size since the density map is 1

8 of
the input image size (due to pooling operations). Then, a
pixel is considered a candidate for a predicted location if its

1Solving for P using D1 and D2 in (2) and (3) requires an inefficient
nested optimization.

value is the local maximum in a 3×3 window centered on
the pixel. Finally, the candidates with density larger than
0.05 are the final location predictions.

4. Relationship with traditional losses
In this section, we prove that the traditional L2 loss and

Bayesian loss (BL) [29] are suboptimal solutions to the un-
balanced OT in our loss function in (1). In particular, L2 and
BL are both 2-stage approximations to solve (1), consisting
of: 1) constructing a half-iteration approximate solution of
the transport matrix P using entropic-regularized balanced
OT with squared Euclidean transport cost; 2) substituting
the approximate P into our loss in (1). Because the com-
puted P is a half-iteration approximation to the minimiza-
tion in (1), both L2 and BL are suboptimal approximations
of our loss function.

4.1. Half-iteration approximations for P

We first derive closed-form solutions to approximate P
under the entropic-regularized balanced OT problem. Re-
moving the last two terms in (1), we obtain the entropic
regularized OT problem,

LεC(A,B) = min
P∈Rn×m+

〈C,P〉 − εH(P), (7)

where C, A, B are defined as before. As shown in [1], the
solution to (7) is unique with P = [Pij ]ij ,

Pij = uiKijvj , Kij = exp(−Cij/ε), (8)
where u = [ui]i,v = [vj ]j are from the Sinkhorn iterations,

u(`+1) = a
Kv(`) , v(`+1) = b

K>u(`+1) , (9)
where the division is element-wise. Typically, the iterations
are initialized with v = 1m.

We next obtain 2 approximate solutions to P, by substi-
tuting a half Sinkhorn iteration, u(`+1) or v(`+1), into (8),

P̂ij =
[

a
Kv

]
i
Kijvj , P̃ij = uiKij

[
b

K>u

]
j
. (10)

If v is uniform (as in the typical initialization) and the cost
function Cij is the squared Euclidean distance, then

P̂ij =
Kij∑m
j=1Kij

ai = π̂ijai, π̂ij =
exp(−‖xi−yj‖2/ε)∑m
j=1 exp(−‖xi−yj‖2/ε) .

Similarly, assuming u is initialized as uniform and Cij
is the squared Euclidean distance, then for P̃ij we have

P̃ij =
Kij∑n
i=1Kij

bj = π̃ij , π̃ij =
exp(−‖xi−yj‖2/ε)∑n
i=1 exp(−‖xi−yj‖2/ε) ,

since bj = 1. Note that the difference between π̂ij and π̃ij
is the summation in the denominator is either over GT an-
notation locations yj or density map pixels xi, respectively.

4.2. Relationship with L2 Loss
We now derive the L2 loss as a special case of our loss

function when using the suboptimal transport matrix P̃.
Substituting into (1), we note that the first 2 terms, 〈C, P̃〉
and H(P̃) are constants w.r.t. a, and thus do not affect
the loss in terms of a. Next, it is straightforward to show



that P̃>1n = 1m, and therefore the fourth term in (1) is
D2(P̃>1n|b) = 0. Only the third term (i.e, the pixel-wise
loss) remains, and assuming τ = 1, we have the loss

L̃(A,B) = D1(P̃1m|a) =

n∑
i=1

(ai − ãi)2, (11)

ãi = [P̃1m]i =

m∑
j=1

π̃ij =

m∑
j=1

exp(−‖xi−yj‖2/ε)∑n
i=1 exp(−‖xi−yj‖2/ε) .

(12)
Note that ãi is equivalent to a “ground-truth” density map
value at pixel location i, which places a Gaussian kernel
with squared-bandwidth ε/2 at each annotation yj . The de-
nominators in (12) are the normalization constants of each
Gaussian. Thus from (11) and (12), our loss using the ap-
proximate transport matrix P̃ is equivalent to L2 loss with
traditional Gaussian-based density maps for supervision.

4.3. Relationship with Bayesian Loss

We next derive BL [29] as a special case of our loss using
approximation P̂. Note that π̂ij is the probability of assign-
ing the density value of the i-th pixel to the j-th annotation
point, as defined in [29]. Since [P̂1m]i =

∑m
j=1 π̂ijai =

ai, then the third term in (1) is D1(P̂1m|a) = 0. Assuming
that ε is small (so that the entropy term can be ignored) and
τ = 1, we have the loss

L̂(A,B) = 〈C, P̂〉+D2(P̂>1n|b) (13)

=

n∑
i=1

ωiai +

m∑
j=1

|1−
n∑
i=1

π̂ijai|, (14)

where ωi =
∑m
j=1 Cij π̂ij =

∑
j ||xi−yj ||2π̂ij is a weight

on the prediction ai. The second term in (14) is exactly the
point-wise Bayesian loss defined in [29]. The first term in
(14) can be interpreted as a background loss, which penal-
izes non-zero values of ai for pixels xi far from any an-
notation (i.e., false positives). In particular, the weight ωi
on the i-th pixel is based on a weighted average of squared
distances from the pixel to the annotations.

We now relate the background term in (14) with the
background model used in BL [29]. The background loss
in [29] is based on the nearest annotation to each point xi
(details in Supp. B),

LBG = |0−
n∑
i=1

ω̄iai| =
n∑
i=1

ω̄iai, (15)

where the weight ω̄i = k̄i
k̄i+

∑m
j=1Kij

and k̄i = exp(−(d −
||xi − yη(i)||)2/ε), and η(i) is the index of the annota-
tion nearest to xi. The weight can be rewritten as ω̄i =

exp( 2d
ε ||xi − yη(i)|| − d2

ε )π̄i, where π̄i =
Ki,η(i)

k̄i+
∑m
j=1Kij

is

the weight contribution for the nearest neighbor η(i). Note
that (15) and the first term in (14) have the same form, but
use different weight values ω̄i or ωi. For BL, the weight ω̄i

density map Bayesian Loss approximate UOT

Figure 3: Comparison of background weight maps for Bayesian Loss (ω̄)
and approximate UOT (ω) in (14).

is based on the exponential distance to the nearest annota-
tion η(i). In contrast, for the background term in (14), the
weight ωi is based on a weighted average of squared dis-
tances to all annotations. Therefore, the background model
used in [29] is a special case of the background term in (14).
Fig. 3 shows a visualization of the weights maps for ω̄i and
ωi. Both BL and (14) have large weights for background
regions and small weights for head (annotation) regions.
However, the weight map for (14) is smoother since all an-
notations are considered using squared distances, while the
weight map for BL contains flat regions since it uses the
exponential distance to only the nearest annotation.

Thus, from (14), BL with background model is a spe-
cial case of our proposed loss in (1), where the approximate
transport matrix is P̂ and a single-neighbor approximation
of the cost matrix C is used to compute the cost term (i.e.,.
the background loss). If no background model is used, then
the cost matrix is assumed to be 0.

5. Experiments
In this section, we evaluate the counting and localization

performance using the proposed general loss function.

5.1. Experimental setups

Datasets: We evaluate the performance of the proposed
loss function on four datasets: ShanghaiTech [50], UCF-
QNRF [13], JHU-CROWD++ [39], and NWPU-Crowd
[45]. ShanghaiTech contains two parts: Part A (482/300 for
training/testing) and Part B (716/400 for training/testing).
UCF-QNRF is a large-scale dataset consists of 1,535 high-
resolution crowd images (1,201/334 for training/testing).
JHU-CROWD++ contains 4,317 images (2,722/500/1,600
images are for training/validation/testing). NWPU-Crowd
is the largest dataset with 3,109 training images, 500 vali-
dation images, and 1,500 testing images (whose labels are
not release to public for fair comparison). We report results
on the NWPU-Crowd test set.

Evaluation metrics: Mean absolute error (MAE) and
root mean squared error (MSE) are used as the evaluation
metric for counting performance, as in previous works [16]:

MAE =
1

N

∑
i

|yi − ŷi|, MSE = (
1

N

∑
i

(yi − ŷi)2)1/2,

where yi, ŷi are the GT and predicted counts. To evalu-
ate the localization performance, we followed the protocols
used in NWPU-Crowd and UCF-QNRF, respectively. For



Table 1: Test results comparing different loss functions with different back-
bones on UCF-QNRF.

VGG19 [29] CSRNet [21] MCNN [50]
MAE MSE MAE MSE MAE MSE

L2 98.7 176.1 110.6 190.1 186.4 283.6
BL [29] 88.8 154.8 107.5 184.3 190.6 272.3
NoiseCC [41] 85.8 150.6 96.5 163.3 177.4 259.0
DM-count [44] 85.6 148.3 103.6 180.6 176.1 263.3
Ours 84.3 147.5 92.0 165.7 142.8 227.9

NWPU-Crowd, Precision, Recall and F-measure are used,
and Precision, Recall and AUC are used for UCF-QNRF.

Backbone and training: Following the experiment set-
tings in [41], we use 3 backbone networks: VGG19 [29],
CSRNet [21], and MCNN [50]. We train the counting net-
work using our loss function in (1), where P is solved us-
ing the generalized Sinkhorn iterations in (6). We set ε =
0.005. In practice, ε-scaling heuristic is used for accelera-
tion, which needs less than 20 iterations until converge, and
the computation is calculated in log-domain for numerical
stability as in [6]. In preliminary studies using the exponen-
tial transport cost, we observe that η ∈ {0.6, 0.8} yield bet-
ter performance (Fig. 4a). Thus for the perspective-guided
cost, we simply map the range of image pixel y-coordinates
to η ∈ [0.6, 0.8]. VGG19 and CSRNet are pre-trained on
ImageNet, and MCNN is trained from scratch. Adam opti-
mizer [17] is used to train the networks with learning rate
10−5 for VGG19/CSRNet, and 10−4 for MCNN.

5.2. Ablation studies
We first conduct ablation studies on our loss function on

UCF-QNRF or JHU-CROWD++.

5.2.1 Comparison with different losses
In Table 1, we compare the performance of loss functions
with different backbones, including L2 pixel-wise loss,
Bayesian loss (BL) [29], NoiseCC [44], which models noisy
annotations, and DM-count [44], which uses balanced OT
as part of their loss. Our proposed loss function achieves
the lowest MAE among all loss functions. Our loss func-
tion outperforms L2 and BL since we use an optimal trans-
port plan, instead of fixed as shown in Sec. 4, and a better
transport plan (i.e., density map) can achieve better perfor-
mance as shown in [43]. Compared to DM-count, our loss
function achieves better performance especially for MCNN
trained from scratch. Our loss function is based on unbal-
anced OT using exponential transport cost, while DM-count
is based on balanced OT and squared-Euclidean cost. We
further compare the unbalanced/balanced OT frameworks
and transport cost functions in the next 2 ablation studies.

5.2.2 The effect of transport cost functions
We evaluate the effectiveness of the proposed perspective-
guided transport cost by comparing with other cost func-
tions, including Euclidean distance (Lij), squared Eu-
clidean (L2

ij), and exponential of Euclidean (eLij ). The

test results are shown in Fig. 4a. First, the standard cost
function based on Euclidean distance is less effective than
the exponential cost function. The perspective-guided cost
achieves the best performance, which confirms that adapt-
ing the cost function to the perspective changes is effec-
tive for crowd counting. We visualize the density maps pre-
dicted with different cost functions in Fig. 6. Using expo-
nential cost yields a more compact density map compared to
the squared Euclidean cost. Furthermore, using perspective-
guided cost yields more sparsity for high-density regions,
which demonstrates that its efficacy at pushing away den-
sity from background to annotations.

Finally, TV loss used in [44] assumes the same smooth-
ness for all annotations, which is incompatible with
the perspective-guided (PG) cost that produces different
smoothness for each annotation. To confirm this, we con-
duct an experiment by decreasing the weight of TV loss by
10x, and the performance using PG cost improved to MAE
66, which is still worse than using exponential cost with
fixed η = 0.8 (MAE 64). Thus, TV loss hinders the PG
transport cost (with adaptive smoothness), but works with
the exponential cost with fixed η (i.e., fixed smoothness).

5.2.3 The effect of unbalanced/balanced OT
We next compare our unbalanced OT framework with the
balanced OT of DM-count [44], using the same transport
cost functions in Sec. 5.2.2. As seen in Fig. 4a, our proposed
loss outperforms DM-Count when using different cost func-
tions, which demonstrates the efficacy of unbalanced OT for
the density map regression problem. Our proposed loss is
based on the unbalanced OT problem, where extra/missing
density is penalized using both point-wise and pixel-wise
losses. In contrast, DM-count uses balanced OT, and re-
quires an additional count loss, which is a map-wise loss
that is less effective (see discussion in Sec. 2 “loss func-
tions”). Second, the TV loss in DM-Count uses the normal-
ized dot map for pixel-wise supervision, which is prone to
overfitting. Finally, our proposed cost is more effective at
pushing away density from background to annotations com-
pare to squared Euclidean cost (see Sec. 5.2.2).

5.2.4 The effect of ε
We next investigate the effect of blur factor ε, which is
equivalent to the Gaussian squared-bandwidth (variance)
used to generate the ground-truth density maps for L2 and
BL, as shown in Sec. 4.2. The results for varying ε are
shown in Fig. 4b. The L2 loss is sensitive to ε, with MAE
increasing significantly as ε increases. In contrast, BL and
our proposed loss are less sensitive, since the background
model in BL and the transport loss in ours can push density
towards annotations, always making the predicted density
maps compact. The proposed loss function is generally bet-
ter than BL because the BL background model only consid-
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Figure 5: Visualization of density maps predicted from models trained with
different loss functions and blur factors ε. Note that the width and height of
the trained images patches are normalized to 1. The sparsity is defined as
the percentage of pixels with density less than 0.001, and the most sparse
density map is shown in red bold.

ers the nearest annotation, while our loss considers all anno-
tations (see Sec. 4.3). A visualization is shown in Fig. 5. As
the ε increases, the density map for L2 become more blurry
and inaccurate, which demonstrates that L2 is sensitive to
ε. BL and our loss are generally robust to the choice of ε,
and the network can learn a sharper density map with the
proposed loss function, which is better for localization.

5.2.5 The effect of τ and divergence function

Next, we study the effect of τ and the divergence function
for point-wise and pixel-wise cost functions. We try dif-
ferent combinations of L1 and L2 norms with τ = 0.5,
and the results are presented in Fig. 4d. The best perfor-
mance occurs with point-wise L1 and pixel-wise L2, which
matches the common practice for the individual point-wise
and pixel-wise-based losses [29, 42]. Next, using L1 and
L2 for the point-wise and pixel-wise costs, we vary τ (see
Fig. 4c), and visualize the learned density maps in Fig. 6
As τ decreases, the density maps becomes more com-
pact (more sparse), since the transport cost dominates and

annotations

annotations
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Figure 6: Visualization of the effect of (top) transport cost functions, and
(bottom) τ . The sparsity is defined as the percentage of pixels with density
less than 0.001.

Table 2: Effectiveness of terms in the loss function on UCF-QNRF.

Component Combinations
〈C,P〉 X X X X
H(P) X X X

D1(P1m|a) X X X
D2(P>1n|b) X X X

MAE 91.1 85.4 85.0 84.3

pushes the density more towards the annotations.

5.2.6 The effect of terms in the loss function

Finally, we evaluate the effect of different terms in the pro-
posed loss function in Table 2. The most important term
is entropic regularization, which controls the smoothness
of the prediction to prevent over-fitting. Unbalanced OT
(UOT) with either pixel-wise loss (removing D2) or point-
wise loss (removingD1 ) can be effective, and is better than
the corresponding approximations BL and L2 loss (85.4 vs
88.8; 85.0 vs. 98.7), which shows the effectiveness of using
a better transport solution. Finally, UOT with both pixel-
wise and point-wise losses further improves the model.

5.3. Comparison with state-of-the-arts

To evaluate the overall counting performance, we com-
pare VGG19 [29] trained with our loss function with state-
of-the-art methods in Table 3. First, compared with the
baseline method BL and DM-Count, our method achieves
significantly better performance especially for the large-
scale datasets NWPU-Crowd, JHU-CROWD++, and UCF-
QNRF. Second, our model achieves the best MAE on the



Table 3: Comparison with state-of-the-art crowd counting methods.
NWPU JHU++ UCF-QNRF ShTech A ShTech B

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
MCNN [50] CVPR’16 232.5 714.6 188.9 483.4 277.0 426.0 110.2 173.2 26.4 41.3
SwitchCNN [33] CVPR’17 - - - - 228.0 445.0 90.4 135.0 21.6 33.4
CP-CNN [36] ICCV’17 - - - - - - 73.6 106.4 20.1 30.1
ACSCP [34] CVPR’18 - - - - - - 75.7 102.7 17.2 27.4
CSRNet [21] CVPR’18 121.3 387.8 85.9 309.2 110.6 190.1 68.2 115.0 10.6 16.0
CL [13] ECCV’18 - - - - 132.0 191.0 - - - -
SANet [3] ECCV’18 190.6 491.4 91.1 320.4 - - 67.0 104.5 8.4 13.6
DSSINet [25] ICCV’19 - - 133.5 416.5 99.1 159.2 60.6 96.0 6.8 10.3
MBTTBF [37] ICCV’19 - - 81.8 299.1 97.5 165.2 60.2 94.1 8.0 15.5
BL [29] ICCV’19 105.4 454.2 75.0 299.9 88.7 154.8 62.8 101.8 7.7 12.7
LSCCNN [32] TPAMI’20 - - 112.7 454.4 120.5 218.2 66.5 101.8 7.7 12.7
KDMG [43] TPAMI’20 100.5 415.5 69.7 268.3 99.5 173.0 63.8 99.2 7.8 12.7
RPNet [48] CVPR’20 - - - - - - 61.2 96.9 8.1 11.6
ASNet [14] CVPR’20 - - - - 91.6 159.7 57.8 90.1 - -
AMSNet [10] ECCV’20 - - - - 101.8 163.2 56.7 93.4 6.7 10.2
AMRNet [27] ECCV’20 - - - - 86.6 152.2 61.6 98.4 7.0 11.0
LibraNet [24] ECCV’20 - - - - 88.1 143.7 55.9 97.1 7.3 11.3
DM-count [44] NeurIPS’20 88.4 357.6 68.4 283.3 85.6 148.3 59.7 95.7 7.4 11.8
NoiseCC [41] NeurIPS’20 96.9 534.2 67.7 258.5 85.8 150.6 61.9 99.6 7.4 11.3
Ours 79.3 346.1 59.9 259.5 84.3 147.5 61.3 95.4 7.3 11.7

Table 4: Localization performance on NWPU-Crowd dataset.
Precision Recall F-measure

Faster RCNN [25] 0.958 0.035 0.068
TinyFace [9] 0.529 0.611 0.567
VGG+GPR 0.558 0.496 0.525
RAZNet [23] 0.666 0.543 0.599
ours 0.800 0.562 0.660

Table 5: Localization performance on UCF-QNRF dataset.

Precision Recall AUC
MCNN [50] 0.599 0.635 0.591
ResNet [8] 0.616 0.669 0.612
DenseNet [11] 0.702 0.581 0.637
Encoder-Decoder [2] 0.718 0.630 0.670
CL [13] 0.758 0.598 0.714
DM-Count [44] 0.731 0.638 0.692
VGG19+L2 0.605 0.670 0.623
VGG19+BL [29] 0.767 0.654 0.720
VGG19+ours 0.782 0.748 0.763

3 largest datasets and competitive performance on Shang-
haiTech, without any special design to extract multi-scale
features or to handle noisy annotations. The experiment
confirms the effectiveness of the proposed loss function.

5.4. Localization

Finally, since our loss function trains the model to pre-
dict compact density maps that are suitable for localization,
we evaluate the localization performance on NWPU-Crowd
and UCF-QNRF. We compare against other state-of-the-
art that have reported results on localization, and the re-
sults are presented in Tables 4 and 5. On NWPU-Crowd,
our loss achieves the overall best performance as quantified
by F-measure. Faster RCNN, a detector-based approach,
has the highest precision but lowest recall, which shows
that it cannot handle the small objects far from the cam-
era. In contrast, TinyFace has the highest recall, but the
lowest precision, showing that it has many false-positives.
Our loss yields a more balanced localization result, obtain-
ing the best F-measure, and the 2nd best precision and re-
call. RAZNet also achieves better performance than the
detection-based methods, via its recurrent zooming mech-

anism for handling small objects. However, our loss out-
performs RAZNet, without any special design for predict-
ing high-resolution density maps or zooming mechanism.
One localization example from the NWPU-Crowd test set
is shown in Fig. 7.

On UCF-QNRF, the proposed loss outperforms other
loss functions including composition loss (CL), which is de-
signed for localization. Our loss also outperforms its base-
lines L2 and BL, showing the efficacy of the proposed loss
over the purely pixel-wise and point-wise losses. The exper-
iment demonstrates that the proposed loss can be naturally
used for localization, since the density is encouraged to be
compact around the annotations during optimization with
transport loss and exponential cost.

In Supp. D, we show a comparison of the localization re-
sults for different loss functions. For L2 loss, many false
negatives appear in dense regions, and the recall is the
worst, which shows that L2 loss cannot handle small objects
far from the camera. BL and DM-Count have better recall,
but BL has many false positives in high-density regions, and
DM-Count has many false positives even in low-density re-
gions. Our proposed loss achieves both high precision and
recall, yielding the best F-measure.

Figure 7: Example localization result on NWPU-Crowd test set.

6. Conclusion
In this paper, we propose a generalized loss function

for learning density maps for crowd counting and local-
ization, which is based on unbalanced optimal transport.
We prove that traditional L2 and Bayesian loss are spe-
cial cases and suboptimal solutions of our loss function. A
perspective-guided cost function is proposed to handle per-
spective transformation in crowd images. We then conduct
extensive experiments and achieve superior performance on
large-scale datasets. Finally, we apply the proposed loss
function to crowd localization and achieve the best perfor-
mance without any special design of the architecture.
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