
Cross-View Cross-Scene Multi-View Crowd Counting

Qi Zhang1, Wei Lin2, Antoni B. Chan1

1 Department of Computer Science, City University of Hong Kong, Hong Kong SAR, China

{qzhang364-c@my., abchan@}cityu.edu.hk
2School of Computer Science and School of Artificial Intelligence,

Northwestern Polytechnical University, Xi’an, Shaanxi, China.

elonlin24@gmail.com

Abstract

Multi-view crowd counting has been previously proposed

to utilize multi-cameras to extend the field-of-view of a sin-

gle camera, capturing more people in the scene, and im-

prove counting performance for occluded people or those in

low resolution. However, the current multi-view paradigm

trains and tests on the same single scene and camera-views,

which limits its practical application. In this paper, we

propose a cross-view cross-scene (CVCS) multi-view crowd

counting paradigm, where the training and testing occur on

different scenes with arbitrary camera layouts. To dynam-

ically handle the challenge of optimal view fusion under

scene and camera layout change and non-correspondence

noise due to camera calibration errors or erroneous fea-

tures, we propose a CVCS model that attentively selects

and fuses multiple views together using camera layout ge-

ometry, and a noise view regularization method to train the

model to handle non-correspondence errors. We also gener-

ate a large synthetic multi-camera crowd counting dataset

with a large number of scenes and camera views to capture

many possible variations, which avoids the difficulty of col-

lecting and annotating such a large real dataset. We then

test our trained CVCS model on real multi-view counting

datasets, by using unsupervised domain transfer. The pro-

posed CVCS model trained on synthetic data outperforms

the same model trained only on real data, and achieves

promising performance compared to fully supervised meth-

ods that train and test on the same single scene.

1. Introduction

Deep neural network-based multi-view (MV) crowd

counting [56, 57] was recently proposed to count people in

wide-area scenes that cannot be covered by a single cam-

era. In these works, feature maps from multiple camera

views are fused together and decoded to predict a scene-

level crowd density map. However, one major disadvantage

of the current MV paradigm is the models are trained and

View
 pooling

Cross-View Cross-Scene

Synthetic validation dataset

Real test datasets

Synthetic training dataset

PETS2009

CityStreet

DukeMTMC

Figure 1: Cross-view cross-scene (CVCS) multi-view crowd counting.

The CVCS model is trained and validated on synthetic multi-view crowd

scenes, where the scenes and camera-views are different between the train-

ing and validation sets. To test on a real scene, unsupervised domain adap-

tation is applied to the trained CVCS model, where only the real images

are used to fine-tune the model.

tested on the same single scene and a fixed camera layout,

and thus the trained models do not generalize well to other

scenes or other camera layouts.

In this work, we propose a new paradigm of cross-

view cross-scene multi-view counting (CVCS), where MV

counting models are trained and tested on different scenes

and arbitrary camera layouts. This paradigm is challeng-

ing because both the scene and camera layout (including

number of cameras) change at test time. In particular, in

single-scene MV counting, the optimal selection of features

from each camera and the handling of non-correspondence

errors (caused by camera calibration errors or erroneous

features) can be directly learned by the MV model (in its

network parameters), since it is trained and tested on the

same scene/cameras. In contrast, for CVCS MV count-

ing, because the camera positions, camera orders, and

scenes are all varying, the MV counting model must learn

to dynamically handle different camera layouts and non-

correspondence noise. To address these two issues, we pro-

pose a CVCS counting model, which attentively selects and

fuses features from multiple cameras using the camera lay-

557

Feature extraction
View-pooling

View 1

View 2

View 3

View K

…

Multi-view decoding

Prediction

3x3, 512
3x3, 512

3x3, 256
3x3, 128

3x3, 512

3x3, 64
3x3, 1

3x3, 64
3x3, 64

3x3, 128

3x3, 256

3x3, 128

3x3, 256
3x3, 256

pooling, 2x2

Pooling, 2x2

Camera parameters

Distm
easure

Distance
maps

Camera
selection

CVCS model

Figure 2: The pipeline of the cross-view cross-scene multi-view counting model (CVCS): 1) Single-view feature extraction: The first 7 layers of VGG-Net

extracts the single-view features; 2) Feature projection: The extracted single-view features are projected to the average height-plane by camera projection;

3) Multi-camera selection and fusion: An adaptive CNN subnet selects among the multi-view feature maps, through an attention mechanism guided by

the object-to-camera distance, and a max-pooling layer fuses projected camera-view features; 4) Multi-view decoding: The fused projected features are

decoded to predict the scene-level density maps.

out (object-to-camera distances), and a noise-injection reg-

ularization scheme, which simulates non-correspondence

errors, improving model generalization.

Effectively training cross-scene counting models re-

quires a large dataset of scenes in order to capture the many

possible variations of camera poses and scenes. For ex-

ample, cross-scene models for single-view counting [3, 58,

31, 37, 1] are trained on large single-view datasets, such

as ShanghaiTech [58], UCF-QNRF [12], JHU-CROWD++

[44] or NWPU-CROWD [51], which contain thousands

of images, each of a different scene. However, current

MV counting datasets, such as PETS2009 [8], DukeMTMC

[33], and CityStreet [56] only contain 2 to 4 views of a sin-

gle scene, and combining these three datasets only yields 3

scenes and 3 camera layouts, which is not enough to train a

CVCS model. Collecting and annotating a large-scale MV

dataset, comprising a large number of scenes taken with

many synchronized cameras, is a time-consuming and la-

borious task, and is further complicated due to personal pri-

vacy issues and social-distancing in the current pandemic

situation. To avoid such limitations, we generate a synthetic

CVCS multi-view dataset of 31 scenes containing around

100 camera views with 100 frames in each view. The large

number of camera views for each scene is sufficient for gen-

eralizing across camera layouts.

We use the synthetic dataset to train our CVCS model,

and directly applying the trained CVCS model to real-world

multi-view counting datasets, yielding promising results.

The results are further improved by using unsupervised do-

main adaptation to fine-tune the trained model on only the

test images (and not crowd labels).

In summary, the contributions of this paper are 3-fold:

1. We propose a cross-view cross-scene multi-view

counting DNN model (CVCS), which adaptively se-

lects and fuses multi-cameras, and a noise view regu-

larization method to improve generalization. To our

knowledge, this is the first study on the cross-view

cross-scene multi-view problem in crowd counting.

2. We propose a large synthetic multi-view crowd count-

ing dataset, which contains a large number of camera

views, scene variations and frames. This is the first

large synthetic dataset for multi-view counting, which

enables research on cross-scene cross-view problems.

3. The proposed CVCS model outperforms existing state-

of-the-art MV models in the cross-view cross-scene

paradigm. Furthermore, the CVCS model, trained

on synthetic scenes and adapted to a real-world test

scene with unsupervised domain adaptation, achieves

promising performance compared with MV models

trained on single-scenes.

2. Related Work

Multi-view crowd counting. Traditional multi-view

(MV) counting methods [20, 28, 34, 47, 9] rely on fore-

ground extraction techniques and hand-crafted features, and

frequently train on PETS2009, which only contains 2 to

4 camera views and hundreds of frames. More recently,

[56] proposed a multi-view multi-scale (MVMS) counting

model, which fuses multiple views and multiple scales of

feature maps into a scene-level feature map, and then de-

codes it to predict a scene-level density map. [56] collected

a new MV counting dataset CityStreet for large-crowd

single-scene training. Follow-up work [57] proposed to use

3D ground-truth for MV counting to improve counting per-

formance. However, both these works are trained and tested

on single scenes, and do not generalize to cross-scene tasks.

Furthermore, the existing MV counting datasets have too

few views for cross-view training. In contrast, in our paper

we address learning multi-view models that generalize well

to new scenes and camera-view layouts, and generate a new

large-scale synthetic dataset for training.

Cross-scene single-view crowd counting. Single-

558

view counting algorithms [49] achieve cross-scene ability

mainly by training DNNs on single-view counting datasets,

which contain a large number of images capturing different

scenes from different view angles [55, 58, 12, 44, 51, 11].

Unsupervised/semi-supervised [36, 43, 26] or weakly su-

pervised methods [25, 48, 54, 59] have also been proposed

to improve the cross-scene counting performance on the ex-

isting single-view datasets. Various works propose multi-

scale DNN models to handle perspective/scale variations

across scenes [42, 17, 15, 24, 53, 16, 27]. [18] proposed

an adaptive convolution neural network (ACNN), which uti-

lizes the context (camera height and angle) as an auxiliary

input to make the model adaptive to different perspectives.

[40] integrated the perspective information to provide addi-

tional knowledge of a person’s scale change in an image.

[50] utilized a large synthetic single-view crowd counting

dataset to train counting models, and used a CycleGAN

transfer model to apply these models to real-world datasets,

improving performance.

Synthetic datasets. Synthetic data is an increasingly

popular tool for training deep learning models for vari-

ous computer vision tasks [29], such as single-view crowd

counting [50, 6, 5], automatic driving [21, 35, 10], image

segmentation [35], and indoor navigation [39, 38, 46, 52].

Synthetic data is beneficial to real-world computer vision

tasks when the real data is insufficient or difficult to ac-

quire, or hard to annotate. To our knowledge, our gener-

ated dataset is the first large-scale synthetic dataset for the

multi-view crowd counting problem.

Cross-view cross-scene in other multi-camera tasks.

Cross-view cross-scene is also an important issue for other

multi-camera or cross-camera related vision tasks, such

as multi-view tracking/detection [2, 4], 3D reconstruction

[45], 3D human pose estimation [13], or person ReID [60].

To obtain cross-view or cross-scene generalization, these

methods rely on large training datasets [13], image style

transfer [60] or adaptive view or scene modeling [7, 45].

[13] presented two solutions for multi-view 3D human pose

estimation based on learnable triangulation methods, by

combining 3D information from multiple 2D views, and

showed that the model trained on Human3.6m general-

ized to other 3D human pose datasets. [60] proposed to

use CycleGAN [61] to smooth the camera style disparities.

[45] proposed Scene Representation Networks, which map

world coordinates to a feature representation of local scene

properties, and generalize to other scenes by assuming the

same class has common shape and appearance properties

that are characterized by latent variables. [7] introduced

the Generative Query Network to predict unobserved view-

points, in which the viewpoint parameters are network in-

puts and output is the view-adaptive feature representation.

Similar to these approaches, we also need large-scale

data for training the cross-view cross-scene MV counting

models, and thus we generate a large synthetic dataset for

the CVCS multi-view counting task. Furthermore, we pro-

pose an adaptive camera selection module to fuse multi-

cameras, guided by the object-to-distance information. Un-

like [60], we directly adapt the trained CVCS model to real-

world datasets with unsupervised domain adaptation.

3. CVCS Multi-View Counting

In this section, we describe the new cross-view cross-

scene (CVCS) multi-view counting task. We follow the

camera settings of [56, 57], in which the input multi-camera

views are synchronized and calibrated. However different

from [56, 57], which assume a fixed number of fixed camera

locations, CVCS assumes that the camera locations change,

and the numbers and order of the cameras vary. Most im-

portantly, the model is trained and tested on distinct scenes

and distinct camera layouts, so as to understand the cross-

view and cross-scene generalization performance.

3.1. CVCS multi­view counting model

Our proposed CVCS multi-view counting model consists

of 4 stages (see Fig. 2), as follows.

(1) Single-view feature extraction: The first 7 layers of

VGG-Net [41, 22] are used to extract the single-view fea-

tures. To handle a variable number of views and input cam-

era order, the feature extraction subnet is shared across all

input camera views, which requires the feature extraction

part to be general enough for different scenes and camera

views. Thus, we choose VGG-Net as the feature extractor.

(2) Single-view feature projection: The extracted single-

view features are projected to a common scene plane by

a projection layer with variable camera parameters. As in

other multi-view methods [56, 57, 13, 19], the projection is

implemented with a spatial transformer net (STN) [14]. In

contrast to [56, 57], which uses a fixed set of camera pa-

rameters in the projection, our model uses different camera

parameters based on the current camera-views.

(3) Multi-camera selection and fusion: An adaptive

CNN selects among the feature maps of the camera-views,

based on an attention mechanism guided by the object-to-

camera distance (more details in Sec. 3.2). The motivation

of using a selection mechanism is to allow the network to

learn, at each location in the scene-level plane, which cam-

era should be more important during fusion. A view-wise

max-pooling layer fuses the projected multi-view features.

Since the output size of the max-pooling is fixed, the fusion

stage is invariant to the number and order of the cameras.

(4) Multi-view decoding: the fused projected features are

decoded to predict the scene-level density map.

The detailed layer settings of each module can be found

in the supplemental. The CVCS model is trained using the

MSE loss between the predicted and ground-truth scene-

level density map. To make the CVCS model robust to

559

Figure 3: The distance maps and camera selection maps. Warmer colors

indicate larger values. In the bottom row, yellow corresponds to 1.

non-correspondence errors arising from small camera cal-

ibration errors or erroneous features, we propose a noise-

injection method that creates an extra camera view with

noise (see Sec. 3.3).

A key difference of our CVCS model and the previ-

ous MV counting models [56] is that our model is specifi-

cally designed to handle different scenes and camera views,

through: 1) layers that are invariant to camera order and

camera view, and 2) a multi-view fusion model based on

camera layout geometry, which adapts to each camera lay-

out. Another key difference is the proposed noise-injection

method to regularize the our model during training.

3.2. Camera selection module

Intuitively, when fusing multi-view features together to

form the scene-plane feature map, cameras that are closer

to a particular location in the scene-plane should be favored

over other cameras, since closer cameras have a clearer view

of the location and likely yield more reliable features. Thus,

we propose a camera selection module that selects and fuses

cameras based on the object-to-camera distance. The raw

object-to-camera distance map is input into a subnet CNN,

which maps the raw distance to a camera score. Next, using

the camera score, a distance measure layer calculates the

weights for each camera.

Formally, let F and P denote the feature extraction and

projection layer. The K input camera views are {Vk}
K
k=1

,

their corresponding distance maps are {Dk}
K
k=1

(see Fig. 3)

and extracted single-view features are {Fk}
K
k=1

. The dis-

tance map of each camera view is computed (as in the side

information used in [56] for scale selection):

D(x, y) = log(||RP(x, y, havg) + T ||2), (1)

where P , R and T are the camera-view to world projection

function, the rotation matrix, and translation, respectively,

and havg is the average person height.

To perform camera selection, first the distance maps are

passed through a shared CNN M , and then projected to the

scene-plane, Mk = P (M(Dk)). Next, the distance mea-

Prediction

View 1

View 2

View 3

…

CVCS model

Noise camera view
Figure 4: CVCS model with noise view regularization during training. The

noise camera view can be added at different layers (see Tab. 1). During

testing, the noise view is removed.

sure layer transforms Mk into weight for each camera:

W̃k = 1/ exp((Mk − M̂)2), (2)

where M̂ is the distance to the nearest camera for each pixel

(i, j) on the scene-plane,

M̂(i, j) = min(M1(i, j), · · · ,MK(i, j)). (3)

In (2), the nearest camera is assigned weight 1 and other

cameras are assigned weights proportionally to the distance

ratio, yielding the weight map. Note that the pixels out of

the camera views are masked out, and not involved in the

camera selection map calculation. The weight maps are nor-

malized across views, Wk = W̃k/
∑K

n=1
W̃n, and for each

view k, the weight map is element-wise multiplied with the

corresponding projected camera-view feature map P (Fk),
yielding the attended projected feature map Wk ⊗ P (Fk).

In summary, the camera selection module uses side in-

formation to dynamically select and fuse the camera views

based on the geometry of the camera layout. For compar-

ison, a scale selection module is used in [56], where the

object-to-distance map selects the appropriate feature scale

in the camera-view to obtain scale consistency across views

and within images. In contrast, our camera selection mod-

ule picks the appropriate camera when performing feature

fusion at the scene-level, in order to keep the highest fi-

delity features. Adaptive camera selection is required for

CVCS, since the camera layout changes. In contrast, for

single-scene MV models, the camera selection is learned

implicitly in the network parameters, which does not gener-

alize to new camera layouts. We further compare these two

selection modules in the ablation study.

3.3. Noise camera view regularization

Assuming a correct camera projection and noiseless fea-

ture extraction process, the projected features should all

align on the scene-level plane. However, in a real sys-

tem, camera calibration errors, imperfect projection oper-

ators, and spurious noise in the feature maps cause non-

correspondence errors in the projected feature maps. In

560

Figure 5: Robustness to noise: the feature maps and prediction for models

trained with/without noise view regularization. The input is a Gaussian

noise image.

single-scene MV counting, a scene- and layout-dependent

CNN fusion module learns how to handle these non-

correspondence errors. On the other hand, CVCS count-

ing cannot use layout-dependent fusion modules, since the

scene and camera layout change.

To make the CVCS model robust to non-correspondence

error, we propose a noise-based regularization scheme,

where an extra camera view consisting of Gaussian noise

ǫ = N(0, 1) is input in the model at training stage together

with the real camera views (see Fig. 4). The camera geom-

etry of the virtual noise camera is the same as one of the

input cameras. Note that the noise camera view and associ-

ated layers are removed in the testing stage.

Intuitively, the noise camera view simulates non-

correspondence errors by randomly activating features in

the map. Training with the noise camera view guides the

model to reduce the influence of this type of noise on the

final prediction, preventing overfitting. An example is seen

in Fig. 5, where the model learns to ignore the noise when

trained with noise-view regularization. The regularization

effect can also be explained from other aspects:

1) Data augmentation. Denote the whole CVCS model

as M. The model with noise camera view is changed from

M(x1, ..., xK) to M(x1, ..., xK , ǫ), where xk is a real in-

put camera view and ǫ is the random noise view. During

training, the input camera views can be the same but noise

view ǫ is random, which is a type of data augmentation.

2) Noise injection. The proposed noise camera view reg-

ularization approach can also be explained as a new noise

injection function [30] for improving model generalization.

The training of a noise-injected neural networks is equiv-

alent to optimizing the lower bound of the marginal like-

lihood over noise ǫ [30]. The difference between addi-

tive Gaussian noise, dropout and the proposed noise cam-

era view is the form of the noise injection function g(x, ǫ).
Different noise injection functions g can arise by changing

Table 1: Noise injection functions g that vary on where the noise is added.

P is the projection layer, F is the image feature extractor, and H is a

separate feature extractor for the noise.

g(x, ǫ) Noise view added ...

max(P (F (x)), ǫ) after projection

max(P (F (x)), P (ǫ)) before projection

max(P (F (x)), P (F (ǫ))) at input layer (same feature extractor)

max(P (F (x)), P (H(ǫ))) at input layer (different feature extractor)

sum(P (F (x)), P (F (ǫ))) at input layer, sum (same feature extractor)

sum(P (F (x)), P (H(ǫ))) at input layer, sum (different feature extractor)

Trained CVCS

Discriminator Synthetic?

Real?

Synthetic

Real

Synthetic
supervisory

Figure 6: The unsupervised domain adaptation to real datasets.

the network layer to which the noise is injected (see Tab. 1).

We compare these different noise injection functions in the

ablation study (Sec. 5.3.2).

3.4. Unsupervised domain adaptation to real data
Our CVCS model is trained on a synthetic multi-view

dataset (see Sec. 4). Directly applying the trained CVCS

model to real multi-view datasets, such as PETS2009 and

CityStreet, will be limited by the domain gap between syn-

thetic and real scenes. To reduce the domain gap, we ap-

ply unsupervised domain adaptation to fine-tune the trained

CVCS model on each test scene, using only the test images

(without the crowd labels). In particular, we add a feature

discriminator to the trained CVCS model to reduce the fea-

ture gap (see Fig. 6). The discriminator is inserted after the

view-pooling layer in the CVCS model. During the fine-

tuning stage, both the real and synthetic images are input

to the model, then the real/synthetic features are fed to the

discriminator to be classified. Only the synthetic features

are sent to the multi-view decoder, since crowd labels for

the real data are not available for training. The fine-tuning

loss function combines the synthetic counting loss and the

discriminator loss. Our procedure of training on synthetic

data and then testing on real data after unsupervised domain

adaptation is more useful for practical applications, com-

pared to previous state-of-the-arts [56, 57], which require

training and testing on the same real scene with fixed cam-

eras.

4. Synthetic CVCS Dataset
The proposed large synthetic multi-view crowd counting

dataset is generated using GCC-CL [50], which works as a

plug-in for the game “Grand Theft Auto V”. The generating

process consists of two parts: scene simulation and multi-

view recording. First, crowd scenes are simulated, through

the selection of the background selected, region of interest

(ROI), weather condition, human models and postures, etc.

Next, cameras are placed at various locations to record the

561

Table 2: Comparison of multi-view crowd datasets.

Dataset Imgs. (train / test) Scenes Counts Views Image Res.

PETS2009 1105 / 794 1 20-40 3 768×576

DukeMTMC 700 / 289 1 10-30 4 1920×1080

CityStreet 300 / 200 1 70-150 3 2704×1520

Synthetic (ours) 200,000 / 80,000 31 90-180 60-120 1920×1080

crowd scene from various perspectives. Birds-eye views are

also collected for visualization. Each person has a specific

ID for mapping their coordinates in the world coordinate

system and their locations in each camera-view image. The

camera parameters, such as coordinates, deflection angles

and fields-of-view, are also recorded.

In total, the whole synthetic MV counting dataset con-

tains 31 scenes. For each scene, around 100 camera views

are set for multi-view recording. The multi-view recording

is performed 100 times with different crowd distributions in

the scene, i.e., each scene contains 100 multi-view frames,

with each frame comprising 60 to 120 camera-views. The

image resolution is 1920×1080. Compared with other MV

counting datasets, like PETS2009 [8], DukeMTMC [33]

and CityStreet [56], our proposed synthetic dataset contains

more scenes, more camera views variations, and more to-

tal images (see Tab. 2), which makes it more amenable for

training and validating CVCS multi-view counting. Exam-

ple images from the proposed synthetic multi-view counting

dataset are shown in Fig. 1 and the Supplemental.

5. Experiments

In this section, we conduct experiments on CVCS multi-

view counting using our proposed model.

5.1. Test datasets

The real test datasets are PETS2009 [8], DukeMTMC

[33] and CityStreet [56]. We use the same dataset set-

tings as previous MV counting [56]. The dataset in-

formation is shown in Tab. 2. The input images are

downsampled to 384×288, 640×360, and 676×380, for

PETS2009, DukeMTMC, and CityStreet, respectively. The

ground-plane scene-level density maps have resolutions of

152×177, 160×120, and 160×192 for the three datasets.

5.2. Experiment settings

The synthetic dataset contains 31 scenes in total, of

which 23 scenes are used for training and the remaining

8 scenes are used for testing. During training, we ran-

domly select K = 5 views for P = 5 times in each it-

eration per frame of each scene. For evaluation, we ran-

domly select K = 5 views for P = 21 times (V/K + 1,

V = 100 camera views) per frame of each scene, in order

to test on more camera layouts. The input image resolu-

tion is 640×360 (resized to 1/3 of the original resolution).

Ground-plane patch-based training is used instead of com-

plete image training, where 5 patches are extracted from

the view-pooled features, corresponding to the 5 patches ex-

Table 3: Experiment results of our CVCS model with different modules.

Model MAE NAE

Backbone 14.13 0.115

Backbone+MVMS 9.30 0.080

Backbone+CamSel 8.63 0.074

Backbone+NoiseV 7.94 0.069

CVCS (Backbone+CamSel+NoiseV) 7.22 0.062

GT Backbone Backbone+MVMS Backbone+NoiseVBackbone+CamSel CVCS

GT: 85.00 Pred: 66.52 Pred: 80.98 Pred: 80.40 Pred: 80.76 Pred: 80.60

GT: 154.00 Pred: 120.00 Pred: 149.04 Pred: 153.49 Pred: 149.79 Pred: 153.78

GT: 117.00 Pred: 76.66 Pred: 104.81 Pred: 118.32 Pred: 115.32 Pred: 115.17

GT: 175.00 Pred: 143.16 Pred: 217.79 Pred: 188.96 Pred: 187.39 Pred: 175.93

Figure 7: The results of CVCS variations on synthetic datasets. Using cam-

era selection and/or noise-view regularization (CVCS, Backbone+CamSel,

Backbone+NoiseV) are more accurate than the backbone or backbone with

MVMS (Backbone+MVMS). See Supplemental for full-size figure.

tracted from the ground-truth scene-level density maps. The

patch size is 160×180, and 1 pixel is equal to 0.5m in the

real world. The ground-truth density maps are generated by

convolving a Gaussian kernel with the ground-truth person

annotation dot map. The learning rate is 1e-3, with learning

decay 1e-4, and weight decay is 1e-4. The single-view fea-

ture extractor is pretrained via a single-view counting task

on the synthetic dataset. Two evaluation metrics are used,

the mean absolute error (MAE) and mean normalized abso-

lute error (NAE) of the predicted counts on the test set.

5.3. Experiment results

We first report results on CVCS multi-view counting on

the synthetic dataset, followed by the ablation study. Fi-

nally, we present results on the real datasets.

5.3.1 CVCS performance

We test 5 variations of our CVCS model on the syn-

thetic dataset. The first method is the backbone model

of our CVCS model without the camera selection and

noise camera view (denoted as “Backbone”). The sec-

ond method is the backbone model with the multi-view

multi-scale selection architecture from [56] (denoted as

“Backbone+MVMS”), where a 3-scale pyramid is used

in the feature extraction part and camera view distance

maps are used to fuse the multi-scales before projection.

The next 2 methods add either the camera selection mod-

ule (Backbone+CamSel) or the noise camera view (Back-

bone+NoiseV) to the backbone model. Finally, adding both

modules to the backbone yields our full model (CVCS).

The results on the synthetic dataset are shown in Table 3

and Fig. 7. Using the proposed camera selection module

562

Table 4: Ablation study on the camera selection module.

Model MAE NAE

Backbone 14.13 0.115

+CamSel (no conv) 10.77 0.089

+CamSel (1×1 conv) 8.63 0.074

+CamSel (3 conv) 8.15 0.069

Table 5: Ablation study of the noise view regularization.

Model Type MAE NAE

Backbone 14.13 0.115

+Dropout 13.16 0.111

+NoiseV (A) max(x, ǫ) 19.91 0.163

+NoiseV (B) max(P (F (x)), ǫ) 9.64 0.084

+NoiseV (C) max(P (F (x)), P (ǫ)) 9.42 0.079

+NoiseV (D) max(P (F (x)), P (F (ǫ))) 7.94 0.069

+NoiseV (E) sum(P (F (x)), P (F (ǫ))) 8.57 0.076

+NoiseV (F) max(P (F (x)), P (H(ǫ))) 8.48 0.074

+NoiseV (G) sum(P (F (x)), P (H(ǫ))) 8.54 0.076

or noise view regularization yields large reduction of er-

rors over the Backbone, while their combination further re-

duces the errors, showing that the two modules can work

together to improve CVCS performance in terms of differ-

ent aspects. The MVMS architecture also reduces the error

when used with the Backbone, as the multi-scale selection

can promote scale consistency of the features across camera

views. However, the error reduction using MVMS is not as

large as using CamSel and NoiseV. The main reason is that

the camera selection and noise view regularization modules

are designed for better cross-view cross-scene performance.

5.3.2 Ablation study

In the ablation study we consider various permutations of

our CVCS model.

Camera selection module. We consider 3 settings of

the CNN mapping in the camera selection module: no con-

volution layers, i.e., passing the distance map directly to the

distance measure layer (denoted as “no conv”), a 1×1 conv

layer, and a 3-layer CNN. The results are shown Table 4.

Compared to the Backbone model, all the camera selection

settings reduce the counting error; CNN achieves the best

error reduction due to its flexibility in mapping the distance

information to a suitable weight.

Noise view regularization. We next experiment with

different types of the noise view regularization added to the

Backbone, as shown Table 5. Generally, adding noise-based

regularization can improve the performance, except when

directly corrupting the input image (NoiseV, Type A). The

best regularization occurs when the noise is passed through

a feature extractor and projection (Types D-G). These noise

injection functions better simulate the noisy feature extrac-

tion process and how the noise is projected into the scene-

level feature map. Dropout regularization is also tested with

the Backbone, where 2 dropout layers are added after the

2nd and 4th layers of the feature extractor. Dropout can

also improve the performance slightly, but not as much as

the noise camera view.

Table 6: Ablation study combining the camera selection module and noise

view regularization. Noise types are defined in Table 5.

Model MAE NAE

Backbone 14.13 0.115

+CamSel (1×1 conv)+NoiseV (Type D) 7.22 0.062

+CamSel (1×1 conv)+NoiseV (Type E) 9.98 0.087

+CamSel (1×1 conv)+NoiseV (Type F) 8.34 0.074

+CamSel (1×1 conv)+NoiseV (Type G) 8.32 0.074

+CamSel (3 conv)+NoiseV (Type D) 7.96 0.069

+CamSel (3 conv)+NoiseV (Type E) 8.22 0.072

+CamSel (3 conv)+NoiseV (Type F) 7.56 0.066

+CamSel (3 conv)+NoiseV (Type G) 7.44 0.065

Table 7: Ablation study on different numbers of input camera views.

Backbone CVCS

No. Views MAE NAE MAE NAE

3 14.28 0.130 7.24 0.071

5 14.13 0.115 7.22 0.062

7 14.35 0.113 7.07 0.058

9 14.56 0.112 7.04 0.056

11 15.15 0.115 7.00 0.055

Combining camera selection and noise view regular-

ization. From the previous experiments, we find that the

camera selection and noise view regularization can both

improve the performance of Backbone model. Since the

two modules address different aspects, we combine the

two modules together to further improve the performance.

Specifically, the camera selection modules are combined

with different noise view regularization methods and the

results are shown in Table 6. The best combination uses

1× 1 conv in the camera selection module and noise injec-

tion in the input view (Type D), max(P (F (x)), P (F (ǫ))).
Generally, the various combinations perform better than the

Backbone and Backbone+MVMS models.

Variable camera number. Our CVCS model is specifi-

cally designed to handle any number of camera views at test

time. To show the influence of number of camera views, we

test CVCS with different number of input cameras. Note

that the models are trained with 5 input camera views, and

tested on different number of views. The results are pre-

sented in in Table 7. The performance with different num-

bers of cameras is stable for both the Backbone and the full

model CVCS. Increasing the camera views from 5 to 11,

the full CVCS achieves slightly lower error because the ex-

tra cameras provide more information in some regions that

were poorly covered with only 5-cameras.

5.3.3 Cross-view cross-scene on real data

We apply the trained CVCS model to real multi-view count-

ing datasets. Unlike previous state-of-the-arts [56, 57] that

train and test on the same single real scene with fixed cam-

era views, we train on synthetic scenes and test on real

scenes (cross-scene setting) with different camera views

(cross-view). We allow unsupervised domain adaptation,

which uses the images of the test scene to fine-tune the fea-

ture extractor, and does not use crowd labels. We believe

563

GT CVCS
RealC

CVCS
RealC+UDA

PETS2009

DukeMTMC

CityStreet

GT: 21.00 Pred: 4.51 Pred: 5.50

GT: 4.00 Pred: 0.37 Pred: 1.56

GT: 82.00 Pred: 335.35 Pred: 384.54

Backbone
Synth

Backbone
Synth+UDA

Pred: 28.28 Pred: 12.92

Pred: 0.87 Pred: 0.59

Pred: 90.37 Pred: 83.63

CVCS (ours)
Synth

CVCS (ours)
Synth+UDA

Pred: 19.53 Pred: 22.54

Pred: 1.19 Pred: 2.06

Pred: 81.71 Pred: 83.01

Pred: 5.47 Pred: 5.90

Pred: 16.10Pred: 22.80

Pred: 98.77 Pred: 119.58

Backbone+MVMS
Synth

Backbone+MVMS
Synth+UDA

Figure 8: The cross-view cross-scene results on real datasets. Our CVCS model trained on the synthetic data shows better performance than CVCS trained

on real data. Applying unsupervised domain adaptation (UDA) to our CVCS improves the performance. See Supp. for full-sized figure.

Table 8: Results testing on real datasets. Different training schemes are

used: “RealS” means training and testing on the same real scene (single-

scene MV); “RealC” means cross-scene training on 2 real scenes and test-

ing on the other; “Synth” means cross-scene training on synthetic dataset;

“+UDA” adds unsupervised domain adaptation.

Test Scene

PETS2009 DukeMTMC CityStreet

Model Training MAE NAE MAE NAE MAE NAE

Dmap wtd [34] RealS 7.51 0.261 2.12 0.255 11.10 0.121

Dect+ReID [56] RealS 9.41 0.289 2.20 0.342 27.60 0.385

LateFusion [56] RealS 3.92 0.138 1.27 0.198 8.12 0.097

EarlyFusion [56] RealS 5.43 0.199 1.25 0.220 8.10 0.096

MVMS [56] RealS 3.49 0.124 1.03 0.170 8.01 0.096

3D [57] RealS 3.15 0.113 1.37 0.244 7.54 0.091

CVCS RealC 23.34 0.729 5.28 0.623 215.23 2.700

CVCS RealC+UDA 20.11 0.636 5.34 0.628 249.25 3.110

Backbone Synth 8.05 0.257 4.19 0.913 11.57 0.156

Backbone+MVMS Synth 6.03 0.191 3.07 0.553 14.02 0.194

CVCS (ours) Synth 5.33 0.174 2.85 0.546 11.09 0.124

Backbone Synth+UDA 5.91 0.200 3.11 0.551 10.09 0.117

Backbone+MVMS Synth+UDA 5.28 0.175 3.00 0.585 12.05 0.157

CVCS (ours) Synth+UDA 5.17 0.165 2.83 0.525 9.58 0.117

this testing paradigm is more practical, since annotations of

the target scenes are not required.

We test three groups of methods, with different train-

ing setups. The first group is trained and tested on sin-

gle real scenes (denoted as “RealS”), and include 2 tra-

ditional multi-view counting methods, Dmap wtd [34, 56]

and Dect+ReID [32, 23, 56], 3 DNN-based fusion methods

(EarlyFusion, LateFusion, and MVMS) [56], and 3D count-

ing [57]. The second group uses cross-scene training on the

real datasets (denoted as “RealC”), where our CVCS model

(Backbone+CamSel+NoiseV) is trained on 2 real scenes,

and tested on the remaining scene. The third group uses

cross-scene training on our synthetic dataset and directly

tests on the real data (denoted as “Synth”). We test 3 mod-

els: Backbone, Backbone+MVMS, and our CVCS model.

We also add unsupervised domain adaptation using images

from the test scene (“+UDA”). Note that no crowd labels are

used from the test scene for UDA.

The test performances of these methods on the 3 real

datasets are shown in Table 8. Directly testing our syn-

thetically trained CVCS on real scenes achieves promis-

ing performance, which is better or competitive to the 2

traditional multi-view counting methods, Dmap wtd and

Dect+ReID. Furthermore, adding unsupervised domain

adaptation (“Synthetic+UDA”) effectively reduces the do-

main gap between synthetic and real data, yielding lower

errors compared to without UDA. Our CVCS also outper-

forms Backbone and Backbone+MVMS, for both Synth

training and Synth+UDA training, which shows the advan-

tage of our cross-scene cross-view specific modules, camera

selection and noise-view regularization.

Training using only the real scenes in a cross-scene man-

ner (RealC) yields very large errors, compared to training

with the synthetic data (Synth), showing that the model

overfits when there are too few training scenes, and that

there is significant benefit in training on more scenes/views

even if they are synthetic. Finally, our CVCS model us-

ing UDA is slightly worse than the MVMS model [56]

trained and tested on the same-scene (MAE increases by 1-

2), which shows the promise of our approach and the CVCS

paradigm. Example visualizations of the results are pre-

sented in Fig. 8.

6. Conclusion

In this paper, we propose the task of cross-view cross-

scene (CVCS) multi-view counting, where models are

trained to generalize to different scenes and camera layouts.

We propose a CVCS multi-view DNN with a camera se-

lection and fusion module and noise-view regularization, to

adapt the network to different camera layouts and to learn

to ignore non-correspondence errors. We collect a large-

scale synthetic dataset with large numbers of camera views

and scenes for training and evaluating the CVCS multi-view

counting. Furthermore, we show that the synthetically-

trained CVCS model can be applied to real scenes via

unsupervised domain adaptation, which only uses images

from the test scene. Overall, our work advances research

on multi-view crowd counting from the single-scene fixed-

camera setting to cross-view cross-scene setting, which is

more practical for deployment.

Acknowledgments. This work was supported by a grant from

the Research Grants Council of the Hong Kong Special Adminis-

trative Region, China (Project No. CityU 11212518).

564

References

[1] Shuai Bai, Zhiqun He, Yu Qiao, Hanzhe Hu, Wei Wu, and

Junjie Yan. Adaptive dilated network with self-correction

supervision for counting. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 4594–4603, 2020. 2

[2] Pierre Baqué, François Fleuret, and Pascal Fua. Deep oc-

clusion reasoning for multi-camera multi-target detection. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 271–279, 2017. 3

[3] Lokesh Boominathan, Srinivas SS Kruthiventi, and

R Venkatesh Babu. Crowdnet: A deep convolutional

network for dense crowd counting. In ACM Multimedia

Conference, pages 640–644. ACM, 2016. 2

[4] Tatjana Chavdarova, Pierre Baqué, Stéphane Bouquet, An-

drii Maksai, Cijo Jose, Timur Bagautdinov, Louis Lettry,

Pascal Fua, Luc Van Gool, and François Fleuret. Wild-

track: A multi-camera hd dataset for dense unscripted pedes-

trian detection. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5030–

5039, 2018. 3

[5] Ernest Cheung, Tsan Kwong Wong, Aniket Bera, Xiaogang

Wang, and Dinesh Manocha. Lcrowdv: Generating labeled

videos for simulation-based crowd behavior learning. In 14th

European Conference on Computer Vision (ECCV), pages

709–727, 2016. 3

[6] Nicolas Courty, Pierre Allain, Clement Creusot, and Thomas

Corpetti. Using the agoraset dataset: Assessing for the qual-

ity of crowd video analysis methods. Pattern Recognition

Letters, 44:161 – 170, 2014. 3

[7] S M Ali Eslami, Rezende, et al. Neural scene representation

and rendering. Science, 360(6394):1204–1210, 2018. 3

[8] James Ferryman and Ali Shahrokni. Pets2009: Dataset and

challenge. In IEEE International Workshop on Performance

Evaluation of Tracking and Surveillance, pages 1–6, 2009.

2, 6

[9] Weina Ge and Robert T. Collins. Crowd detection with a

multiview sampler. In ECCV, pages 324–337, 2010. 2

[10] Xiaoxia Hu, Xuefeng Liu, Zhenming He, and Jiahua Zhang.

Batch modeling of 3d city based on esri cityengine. In IET

International Conference on Smart and Sustainable City (IC-

SSC), pages 69–73, 2013. 3

[11] Y. Hu, X. Jiang, X. Liu, B. Zhang, J. Han, X. Cao, and D.

Doermann. Nas-count: Counting-by-density with neural ar-

chitecture search. In ECCV, 2020. 3

[12] Haroon Idrees and et al. Composition loss for counting, den-

sity map estimation and localization in dense crowds. In

ECCV, pages 532–546, 2018. 2, 3

[13] Karim Iskakov, Egor Burkov, Victor Lempitsky, and Yury

Malkov. Learnable triangulation of human pose. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 7718–7727, 2019. 3

[14] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al.

Spatial transformer networks. In Advances in neural infor-

mation processing systems, pages 2017–2025, 2015. 3

[15] Xiaolong Jiang and et al. Crowd counting and density esti-

mation by trellis encoder-decoder networks. In CVPR, pages

6133–6142, 2019. 3

[16] Xiaoheng Jiang, Li Zhang, Mingliang Xu, Tianzhu Zhang,

Pei Lv, Bing Zhou, Xin Yang, and Yanwei Pang. Atten-

tion scaling for crowd counting. In IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), June

2020. 3

[17] Di Kang and Antoni B. Chan. Crowd counting by adaptively

fusing predictions from an image pyramid. In BMVC, 2018.

3

[18] Di Kang, Debarun Dhar, and Antoni B. Chan. Incorporating

side information by adaptive convolution. In Advances in

Neural Information Processing Systems, pages 3867–3877,

2017. 3

[19] Abhishek Kar, Christian Háne, and Jitendra Malik. Learning

a multi-view stereo machine. In NIPS, pages 365–376, 2017.

3

[20] Jingwen Li, Lei Huang, and Changping Liu. People count-

ing across multiple cameras for intelligent video surveil-

lance. In IEEE Ninth International Conference on Advanced

Video and Signal-Based Surveillance (AVSS), pages 178–

183. IEEE, 2012. 2

[21] Wei Li, Chengwei Pan, Rong Zhang, Jiaping Ren, Yuexin

Ma, Jin Fang, Feilong Yan, Qichuan Geng, Xinyu

Huang, Huajun Gong, Weiwei Xu, Guoping Wang, Di-

nesh Manocha, and Ruigang Yang. Aads: Augmented au-

tonomous driving simulation using data-driven algorithms.

arXiv preprint arXiv:1901.07849, 4(28), 2019. 3

[22] Yuhong Li, Xiaofan Zhang, and Deming Chen. Csrnet: Di-

lated convolutional neural networks for understanding the

highly congested scenes. In CVPR, pages 1091–1100, 2018.

3

[23] Shengcai Liao, Yang Hu, Xiangyu Zhu, and Stan Z Li. Per-

son re-identification by local maximal occurrence represen-

tation and metric learning. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

2197–2206, 2015. 8

[24] Weizhe Liu, Mathieu Salzmann, and Pascal Fua. Context-

aware crowd counting. In CVPR, pages 5099–5108, 2019.

3

[25] Xialei Liu, Joost van de Weijer, and Andrew D. Bagdanov.

Exploiting unlabeled data in cnns by self-supervised learning

to rank. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 41(8):1862–1878, 2019. 3

[26] Yan Liu, Lingqiao Liu, Peng Wang, Pingping Zhang, and

Yinjie Lei. Semi-supervised crowd counting via self-training

on surrogate tasks. arXiv preprint arXiv:2007.03207, 2020.

3

[27] Zhiheng Ma, X. Wei, Xiaopeng Hong, and Y. Gong.

Bayesian loss for crowd count estimation with point super-

vision. pages 6141–6150, 2019. 3

[28] L. Maddalena, A. Petrosino, and F. Russo. People counting

by learning their appearance in a multi-view camera environ-

ment. Pattern Recognition Letters, 36:125–134, 2014. 2

[29] Sergey I. Nikolenko. Synthetic data for deep learning. ArXiv,

abs/1909.11512, 2019. 3

565

[30] Hyeonwoo Noh, Tackgeun You, Jonghwan Mun, and Bo-

hyung Han. Regularizing deep neural networks by noise:

Its interpretation and optimization. In Advances in Neural

Information Processing Systems, pages 5109–5118, 2017. 5

[31] Daniel Onoro-Rubio and Roberto J López-Sastre. Towards

perspective-free object counting with deep learning. In

ECCV, pages 615–629. Springer, 2016. 2

[32] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in neural information pro-

cessing systems, pages 91–99, 2015. 8

[33] Ergys Ristani, Francesco Solera, Roger Zou, Rita Cucchiara,

and Carlo Tomasi. Performance measures and a data set for

multi-target, multi-camera tracking. In European Confer-

ence on Computer Vision workshop on Benchmarking Multi-

Target Tracking, 2016. 2, 6

[34] David Ryan, Simon Denman, Clinton Fookes, and Sridha

Sridharan. Scene invariant multi camera crowd counting.

Pattern Recognition Letters, 44(8):98–112, 2014. 2, 8

[35] Fatemeh Sadat Saleh, Mohammad Sadegh Aliakbarian,

Mathieu Salzmann, Lars Petersson, and Jose M. Alvarez. Ef-

fective use of synthetic data for urban scene semantic seg-

mentation. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 84–100, 2018. 3

[36] Deepak Babu Sam, Neeraj Nagaraj Sajjan, Himanshu Mau-

rya, and Venkatesh Babu Radhakrishnan. Almost unsu-

pervised learning for dense crowd counting. Thirty-Third

AAAI Conference on Artificial Intelligence, 33(1):8868–

8875, 2019. 3

[37] Deepak Babu Sam, Shiv Surya, and R Venkatesh Babu.

Switching convolutional neural network for crowd counting.

In CVPR, pages 4031–4039, 2017. 2

[38] Manolis Savva, Angel X. Chang, Alexey Dosovitskiy,

Thomas A. Funkhouser, and Vladlen Koltun. Minos: Mul-

timodal indoor simulator for navigation in complex environ-

ments. ArXiv, abs/1712.03931, 2017. 3

[39] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,

Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia

Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv

Batra. Habitat: A platform for embodied ai research. 2019

IEEE/CVF International Conference on Computer Vision

(ICCV), pages 9338–9346, 2019. 3

[40] Miaojing Shi, Zhaohui Yang, and et al. Revisiting perspec-

tive information for efficient crowd counting. In CVPR,

pages 7279–7288, 2019. 3

[41] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 3

[42] Vishwanath A Sindagi and Vishal M Patel. Generating high-

quality crowd density maps using contextual pyramid cnns.

In ICCV, pages 1879–1888, 2017. 3

[43] Vishwanath A Sindagi, Rajeev Yasarla, Deepak Sam Babu,

R Venkatesh Babu, and Vishal M Patel. Learning to count

in the crowd from limited labeled data. arXiv preprint

arXiv:2007.03195, 2020. 3

[44] Vishwanath A Sindagi, Rajeev Yasarla, and Vishal M Patel.

Pushing the frontiers of unconstrained crowd counting: New

dataset and benchmark method. In Proceedings of the IEEE

International Conference on Computer Vision, pages 1221–

1231, 2019. 2, 3

[45] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-

zstein. Scene representation networks: Continuous 3d-

structure-aware neural scene representations. In Advances in

Neural Information Processing Systems, pages 1121–1132,

2019. 3

[46] Shuran Song, Fisher Yu, Andy Zeng, Angel X. Chang,

Manolis Savva, and Thomas A. Funkhouser. Semantic scene

completion from a single depth image. 2017 IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

pages 190–198, 2017. 3

[47] N. Tang, Y. Y. Lin, M. F. Weng, and H. Y. Liao. Cross-

camera knowledge transfer for multiview people counting.

IEEE Transactions on Image Processing, 24(1):80–93, 2014.

2

[48] Matthias von Borstel, Melih Kandemir, Philip Schmidt,

Madhavi K. Rao, Kumar T. Rajamani, and Fred A. Ham-

precht. Gaussian process density counting from weak super-

vision. In European Conference on Computer Vision, pages

365–380, 2016. 3

[49] Jia Wan and Antoni B. Chan. Adaptive density map gen-

eration for crowd counting. 2019 IEEE/CVF International

Conference on Computer Vision (ICCV), pages 1130–1139,

2019. 3

[50] Qi Wang, Junyu Gao, and et al. Learning from synthetic data

for crowd counting in the wild. In CVPR, pages 8198–8207,

2019. 3, 5

[51] Qi Wang, Junyu Gao, Wei Lin, and Xuelong Li. Nwpu-

crowd: A large-scale benchmark for crowd counting. arXiv

preprint arXiv:2001.03360, 2020. 2, 3

[52] Yi Wu, Yuxin Wu, Georgia Gkioxari, and Yuandong Tian.

Building generalizable agents with a realistic and rich 3d en-

vironment. ArXiv, abs/1801.02209, 2018. 3

[53] Yifan Yang, Guorong Li, Zhe Wu, Li Su, Qingming Huang,

and Nicu Sebe. Reverse perspective network for perspective-

aware object counting. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 4374–4383, 2020. 3

[54] Yifan Yang, Guorong Li, Zhe Wu, Li Su, Qingming Huang,

and Nicu Sebe. Weakly-supervised crowd counting learns

from sorting rather than locations. ECCV, 2020. 3

[55] Cong Zhang, Hongsheng Li, and et al. Cross-scene crowd

counting via deep convolutional neural networks. In CVPR,

pages 833–841, 2015. 3

[56] Qi Zhang and Antoni B Chan. Wide-area crowd counting

via ground-plane density maps and multi-view fusion cnns.

In Computer Vision and Pattern Recognition, pages 8297–

8306, 2019. 1, 2, 3, 4, 5, 6, 7, 8

[57] Qi Zhang and Antoni B Chan. 3d crowd counting via multi-

view fusion with 3d gaussian kernels. In AAAI Conference

on Artificial Intelligence, pages 12837–12844, 2020. 1, 2, 3,

5, 7, 8

[58] Yingying Zhang and et al. Single-image crowd counting via

multi-column convolutional neural network. In CVPR, pages

589–597, 2016. 2, 3

566

[59] Zhen Zhao, Miaojing Shi, Xiaoxiao Zhao, and Li Li. Ac-

tive crowd counting with limited supervision. arXiv preprint

arXiv:2007.06334, 2020. 3

[60] Zhun Zhong, Liang Zheng, Zhedong Zheng, Shaozi Li,

and Yi Yang. Camera style adaptation for person re-

identification. In Computer Vision and Pattern Recognition,

pages 5157–5166, 2018. 3

[61] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. In IEEE International

Conference on Computer Vision (ICCV), pages 2223–2232,

2017. 3

567

