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A. Additional ablation studies

Ablation study on combining MVMS+NoiseV. The ab-
lation study results of combining MVMS [3] and noise view
regularization are shown in Table 1. In general, combining
MVMS with noise view regularization improves the perfor-
mance of MVMS, but not as much as our CVCS, which in-
cludes the camera selection and noise-view regularization.

Single-view counting method CSRnet for multi-view
counting task. We next test a single-view counting method,
CSRnet [1], on the multi-view counting task. The CSRnet
is trained on the synthetic data. The results are presented in
Table 2 (left column). The ground-truth count is the people
number covered by the corresponding N-cameras. Single-
view counting performs poorly on the multi-view counting
task, and the counting error increases as the counting region
becomes larger (the region is covered by more cameras).
The reason is that the scenes are large and wide, and cannot
be fully covered by a single camera. Note the CSRnet we
adopted performs normally on single-view counting (N=1);
the MAE/NAE is 10.77/0.187 with ground-truth count num-
ber around 90-180, which is similar to the result reported
by [1] on ShanghaiTech B (MAE of 10.6 with average GT
number of 123.6).

Multi-view counting with CSRnet and density map
weighting. We next test CSRnet [1] with the traditional
multi-view counting method based on weighting density
maps from different views (denoted by Dmap weighted)
[3, 2]. In particular, density maps predicted by CSRnet on
the camera-views are fused into a scene-level count using
weight maps, which are based on how many views can see
a particular pixel.

The results on the synthetic dataset are presented in Ta-
ble 2. Dmap weighted fusion improves the performance,
compared to using only a single camera. However, the per-
formance of Dmap weighted is still much worse than the
proposed CVCS multi-view counting method. This shows
that the simple multi-view fusion method cannot well han-

Table 1: Ablation study combining MVMS and noise view regularization.

Model MAE NAE
Backbone 14.13 0.115
+MVMS 9.30 0.080
+MVMS+NoiseV (Type D) 8.80 0.075
+MVMS+NoiseV (Type E) 8.78 0.074
+MVMS+NoiseV (Type F) 9.07 0.077
+MVMS+NoiseV (Type G) 9.00 0.076
Backbone+CamSel 8.63 0.074
CVCS (Backbone+CamSel+NoiseV) 7.22 0.062

dle the multi-view counting task even though the single-
view counting method is sophisticated.

B. Neural network setting
The layer setting details of the each neural networks

module are shown in the Table 3-6.

C. Visualizations
The full-size visualization results on the synthetic and

real datasets are presented in Fig. 1 and 2, respectively.
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Table 2: Ablation study on different numbers of input camera views. The ground-truth counting number is the people count covered by the N-cameras.

1-camera N-cameras
CSRnet CSRnet+Dmap wtd Backbone CVCS

N Views MAE NAE MAE NAE MAE NAE MAE NAE
1 10.77 0.187 - - - - - -
3 48.78 0.469 23.60 0.231 14.28 0.130 7.24 0.071
5 63.45 0.537 30.02 0.258 14.13 0.115 7.22 0.062
7 68.66 0.551 34.72 0.281 14.35 0.113 7.07 0.058
9 72.30 0.562 36.38 0.285 14.56 0.112 7.04 0.056

11 74.86 0.575 37.73 0.291 15.15 0.115 7.00 0.055

GT Backbone Backbone+MVMS Backbone+NoiseVBackbone+CamSel CVCS

GT: 85.00 Pred: 66.52 Pred: 80.98 Pred: 80.40 Pred: 80.76 Pred: 80.60

GT: 154.00 Pred: 120.00 Pred: 149.04 Pred: 153.49 Pred: 149.79 Pred: 153.78

GT: 117.00 Pred: 76.66 Pred: 104.81 Pred: 118.32 Pred: 115.32 Pred: 115.17

GT: 175.00 Pred: 143.16 Pred: 217.79 Pred: 188.96 Pred: 187.39 Pred: 175.93

Figure 1: The results of CVCS variations on the synthetic dataset. Using camera selection and/or noise-view regularization (CVCS, Backbone+CamSel,
Backbone+NoiseV) are more accurate than the backbone or backbone with MVMS (Backbone+MVMS).

Table 3: The layer settings for the single-view feature extraction. The filter
dimensions are output channels, input channels, and filter size w0×h0.

Single-view feature extraction
Layer Filter
conv 1 64×3×3×3
conv 2 64×64×3×3
pooling 2×2
conv 3 128×64×3×3
conv 4 128×128×3×3
pooling 2×2
conv 5 256×128×3×3
conv 6 256×256×3×3
conv 7 256×256×3×3

Table 4: The layer settings for the multi-view decoder.

Multi-view decoder
Layer Filter
conv 1 512×256×3×3
conv 2 512×512×3×3
conv 3 512×512×3×3
conv 4 256×512×3×3
conv 5 128×256×3×3
conv 6 64×128×3×3
conv 7 1×64×3×3
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Figure 2: The cross-view cross-scene results on real datasets. Our CVCS model trained on the synthetic data shows better performance than CVCS trained
on real data. Applying unsupervised domain adaptation (UDA) to our CVCS improves the performance.

Table 5: The layer settings for the camera selection module.

1 conv
Layer Filter
conv 1 1×1×1×1

Initialization k=1, b=0
Activation None

3 conv
Layer Filter
conv 1 64×1×3×3
conv 2 16×64×3×3
conv 3 1×16×3×3

Initialization k=1, b=0
Activation tanh

Table 6: The layer settings for the Discriminator for domain adaptation.

Discriminator
Layer Filter
conv 1 64×256×3×3, stride=(2, 2)
conv 2 64×64×3×3, stride=(1, 1)

Flatten layer
Fully-connected layer


