This CVPR 2020 paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

ROAM: Recurrently Optimizing Tracking Model

Tianyu Yang!? Pengfei Xu?
! Tencent AI Lab

Abstract

In this paper, we design a tracking model consisting of
response generation and bounding box regression, where
the first component produces a heat map to indicate the
presence of the object at different positions and the second
part regresses the relative bounding box shifts to anchors
mounted on sliding-window locations. Thanks to the resiz-
able convolutional filters used in both components to adapt
to the shape changes of objects, our tracking model does
not need to enumerate different sized anchors, thus saving
model parameters. To effectively adapt the model to appear-
ance variations, we propose to offline train a recurrent neu-
ral optimizer to update tracking model in a meta-learning
setting, which can converge the model in a few gradient
steps. This improves the convergence speed of updating the
tracking model while achieving better performance. We ex-
tensively evaluate our trackers, ROAM and ROAM++, on
the OTB, VOT, LaSOT, GOT-10K and TrackingNet bench-
mark and our methods perform favorably against state-of-
the-art algorithms.

1. Introduction

Generic visual object tracking is the task of estimating
the bounding box of a target in a video sequence given only
its initial position. Typically, the preliminary model learned
from the first frame needs to be updated continuously to
adapt to the target’s appearance variations caused by rota-
tion, illumination, occlusion, deformation, etc. However,
it is challenging to optimize the initial learned model effi-
ciently and effectively as tracking proceeds. Training sam-
ples for model updating are usually collected based on es-
timated bounding boxes, which could be inaccurate. Those
small errors will accumulate over time, gradually resulting
in model degradation.

To avoid model updating, which may introduce unre-
liable training samples that ruin the model, several ap-
proaches [4, 43] investigate tracking by only comparing the
first frame with the subsequent frames, using a similarity
function based on a learned discriminant and invariant deep
Siamese feature embedding. However, training such a deep
representation is difficult due to drastic appearance varia-
tions that commonly emerge in long-term tracking. Other

Runbo Hu?
2 City University of Hong Kong

Antoni B. Chan?
3 Didi Chuxing

Hua Chai?

methods either update the model via an exponential moving
average of templates [16, 44], which marginally improves
the performance, or optimize the model with hand-designed
SGD methods [33, 41], which needs numerous iterations
to converge thus preventing real-time speed. Limiting the
number of SGD iterations can allow near real-time speeds,
but at the expense of poor quality model updates due to the
loss function not being optimized sufficiently.

In recent years, much effort has been done on localizing
the object using robust online learned classifier, while few
attention is paid on designing accurate bounding box esti-
mation. Most trackers simply resort to multi-scale search
by assuming that the object aspect ratio does not change
during tracking, which is often violated in real world. Re-
cently, SiamRPN [23] borrows the idea of region proposal
networks [37] in object detection to decompose tracking
task into two branches: 1) classifying the target from the
background, and 2) regressing the accurate bounding box
based with reference to anchor boxes mounted on different
positions. As is shown on the VOT benchmarks [19, 20],
SiamRPN achieves higher precision on bounding box esti-
mation but suffers lower robustness compared with state-of-
the-art methods [8, 9, 26] due to no online model updating.
Furthermore, SiamRPN mounts anchors with different as-
pect ratios on every spatial location of the feature map to
handle possible shape changes, which is redundant in both
computation and storage.

In this paper, we propose a tracking framework which is
composed of two modules: response generation and bound-
ing box regression, where the first component produces a re-
sponse map to indicate the possibility of covering the object
for anchor boxes mounted on sliding-window positions, and
the second part predicts bounding box shifts from the an-
chors to get refined rectangles. Instead of enumerating dif-
ferent aspect ratios of anchors as in SiamRPN, we propose
to use only one sized anchor for each position and adapt
it to shape changes by resizing its corresponding convolu-
tional filter using bilinear interpolation, which saves model
parameters and computing time. To effectively adapt the
tracking model to appearance changes during tracking, we
propose a recurrent model optimization method to learn a
more effective gradient descent that converges the model
update in 1-2 steps, and generalizes better to future frames.
The key idea is to train a neural optimizer that can con-

6718

verge the tracking model to a good solution in a few gradient
steps. During the training phase, the tracking model is first
updated using the neural optimizer, and then it is applied
on future frames to obtain an error signal for minimization.
Under this particular setting, the resulting optimizer con-
verges the tracking classifier significant faster than SGD-
based optimizers, especially for learning the initial tracking
model. In summary, our contributions are:

e We propose a tracking model consisting of resizable
response generator and bounding box regressor, where
only one sized anchor is used on each spatial posi-
tion and its corresponding convolutional filter could be
adapted to shape variations by bilinear interpolation.

e We propose a recurrent neural optimizer, which is
trained in a meta-learning setting, that recurrently up-
dates the tracking model with faster convergence.

e We conduct comprehensive experiments on large scale
datasets including OTB, VOT, LaSOT, GOT10k and
TrackingNet, and our trackers achieve favorable per-
formance compared with the state-of-the-art.

2. Related Work

Visual Tracking Predicting a heat map to indicate the
position of object is commonly used in visual tracking com-
munity [3, 4, 4, 9, 13, 16, 45]. Among them, SiamFC [4]
is one of the most popular methods due to its fast speed
and good performance. However, most response generation
based trackers, including SiamFC, estimate the bounding
box via simple multi-scale search mechanism, which is un-
able to handle aspect ratio changes. To addresses this issue,
recent SiamRPN [23] and its extensions [1 1, 22, 52] pro-
pose to train a bounding box regressor as in object detec-
tion [37], showing impressive performance. Different from
these algorithms which enumerates a set of predefined an-
chors with different aspect ratios on each spatial position,
we adopt a resizable anchor to adapt the shape variation of
object, which saves model parameters and computing time.

Online model updating is another important module that
SiamFC lacks. Recent works improve SiamFC [4] by intro-
ducing various model updating strategies, including recur-
rent generation of target template filters through a convo-
lutional LSTM [48], a dynamic memory network [49, 50],
where object information is written into and read from an
addressable external memory, and distractor-aware incre-
mental learning [53], which make use of hard-negative tem-
plates around the target to suppress distractors. It should
be noted that all these algorithms essentially achieve model
updating by linearly interpolating old target templates with
the newly generated one, in which the major difference is
how to control the weights when combining them. This is
far from optimal compared with optimization methods us-
ing gradient decent, which minimize the tracking loss di-
rectly to adapt to new target appearances. Instead of using
a Siamese network to build the convolutional filter, other
methods [26, 34, 41] generate the filter by performing gra-

dient decent on the first frame, which could be continuously
optimized during subsequent frames. In particular, [34] pro-
poses to train the initial tracking model in a meta-learning
setting, which shows promising results. However, it still
uses traditional SGD to optimize the tracking model dur-
ing the subsequent frames, which is not effective to adapt to
new appearance and slow in updating the model. In contrast
to these trackers, our off-line learned recurrent neural opti-
mizer applies meta-learning on both the initial model and
model updates, which allows model initialization and up-
dating in only one or two gradient steps, resulting in much
faster runtime speed, and better accuracy.

Learning to Learn. Learning to learn or meta-learning
has a long history [2, 32, 38]. With the recent successes of
applying meta-learning on few-shot classification [31, 36]
and reinforcement learning [12, 39], it has regained atten-
tion. The pioneering work [1] designs an off-line learned
optimizer using gradient decent and shows promising per-
formance compared with traditional optimization methods.
However, it does not generalize well for large numbers of
descent step. To mitigate this problem, [28] proposes sev-
eral training techniques, including parameters scaling and
combination with convex functions to coordinate the learn-
ing process of the optimizer. [46] also addresses this issue
by designing a hierarchical RNN architecture with dynami-
cally adapted input and output scaling. In contrast to other
works that output an increment for each parameter update,
which is prone to overfitting due to different gradient scales,
we instead associate an adaptive learning rate produced by
a recurrent neural network with the computed gradient for
fast convergence of the model update.

3. Proposed Algorithm

Our tracker consists of two main modules: 1) a tracking
model that is resizable to adapt to shape changes; and 2) a
neural optimizer that is in charge of model updating. The
tracking model contains two branches where the response
generation branch determines the presence of target by pre-
dicting a confidence score map and the bounding box re-
gression branch estimates the precise box of the target by
regressing coordinate shifts from the box anchors mounted
on the sliding-window positions. The offline learned neu-
ral optimizer is trained using a meta-learning framework to
online update the tracking model in order to adapt to appear-
ance variations. Note both response generation and bound-
ing box regression are built on the feature map computed
from the backbone CNN network. The whole framework is
briefly illustrated on Fig. |

3.1. Resizable Tracking Model

Trackers like correlation filter [16] and MetaTracker [34]
initialize a convolutional filter based on the size of object
in the first frame and keep its size fixed during subsequent
frames. This setting is based on the assumption that the as-

6719

Frames Feature Extractor

Features

.. F;.. . Fy

Historical Frames

Feature

F+)

Future Frame

)
éi?g Meta Loss
—9 -

8

Update Loss

VG

B(t+5)

Figure 1: Pipeline of ROAM++. Given a mini-batch of training patches, which are cropped based on the predicted object boxes, deep features are extracted
by Feature Extractor. The fixed-size Tracking Model =1 is warped to the current target size yielding the warped tracking model 6t=1) asin (2, 3). The
response map and bounding boxes are then predicted for each sample using 6¢=1)_ from which the update loss ¢ (t=1) and its gradient V g(¢—1) =1 gre

computed using ground truth labels. Next, the element-wise stack Z' (t=1) consisting of previous learning rates, current parameters, current update loss and
its gradient are input into a coordinate-wise LSTM O to generate the adaptive learning rate A(=1) a5in (11). The model is then updated using one gradient
descent step (denoted by ©) as in (9). Finally, we apply the updated model 6 ®) ona randomly selected future frame to get a meta loss for minimization as

in (13).

pect ratio of object does not change during tracking, which
is however often violated. Therefore, dynamically adapting
the convolutional filter to the object shape variations is de-
sirable, which means the number of filter parameters may
vary between frames in the video and among different se-
quences. However, this complicates the design of neural
optimizer when using separate learning rates for each filter
parameter. To simplify the meta-learning framework and
to better allow for per-parameter learning rates, we define
fixed-shape convolutional filters, which are warped to the
desired target size using bilinear interpolation before con-
volving with the feature map. In subsequent frames, the
recurrent optimizer updates the fixed-shape tracking model.
Note that MetaTracker [34] also resizes filters to the object
size for model initialization, However, instead of dynami-
cally adapting the convolutional filters to the object size for
subsequent frames, MetaTracker keep the same shape as the
initial filter during the following frames

Specifically, tracking model € contains two parts, i.e.
correlation filter 6.y and bounding box regression filter
0,c4. They are both warped to adapt to the shape variation
of target,

0= [ecfyareg]y (1)
Ocr = W(bes,0),)
éreg = W(Orega ¢)a (3)

where W resizes the convolutional filter to size ¢ = (fy., fe)
using bilinear interpolation. The filter size is computed
from the width and height (w, k) of the object in the pre-
vious image patch (and for symmetry the filter size is odd),

h h
fr =121 = % mod 2+ 1, @)
fo=T221 = E1mod 241)

where p is the scale factor to enlarge the filter size to cover
some context information, and c is the stride of feature map,
and [| means ceiling. Because of the resizable filters, there
is no need to enumerate different aspect ratios and scales
of anchor boxes when performing bounding box regres-
sion. We only use one sized anchor on each spatial location
whose size is corresponding to the shape of regression filter,

(a'w’ah) = (fafr)/pa (6)

This saves regression filter parameters and achieves faster
speed. Note that we update the filter size and its correspond-
ing anchor box every 7 frames, i.e. just before every model
updating, during both offline training and testing/tracking
phases. Through this modification, we are able to initial-
ize the tracking model with 60 and recurrently optimize
it in subsequent frames without worrying about the shape
changes of the tracked object.

6720

