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Abstract

Crowd counting is a challenging task due to factors such

as large variations in crowdedness and severe occlusions.

Although recent deep learning based counting algorithms

have achieved a great progress, the correlation knowledge

among samples and the semantic prior have not yet been

fully exploited. In this paper, a residual regression frame-

work is proposed for crowd counting harnessing the corre-

lation information among samples. By incorporating such

information into our network, we discover that more intrin-

sic characteristics can be learned by the network which thus

generalizes better to unseen scenarios. Besides, we show

how to effectively leverage the semantic prior to improve

the performance of crowd counting. We also observe that

the adversarial loss can be used to improve the quality of

predicted density maps, thereby leading to an improvement

in crowd counting. Experiments on public datasets demon-

strate the effectiveness and generalization ability of the pro-

posed method.

1. Introduction

Crowd counting plays a very important role in intelligent

monitoring systems aiming at automatically detecting the

crowd congestion. Technically, a solution to crowd count-

ing takes input like an image or a video clip, and outputs a

predicted number indicating the crowdedness in the input.

This is very challenging because of issues like large varia-

tions of density, scale, perspective, and severe occlusion.

Traditional algorithms count crowd numbers by detec-

tion of people, which is extremely challenging under highly

congested scenes due to severe occlusions (see Fig. 1).

To avoid difficulties in explicitly detecting people, regres-

sion based approaches are proposed to directly estimate the

crowd number by density related features. However, the

performances of these algorithms are limited due to varia-

tions of density and scale. Recently, crowd counting algo-

rithms have achieved great advances, especially those based
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Figure 1. Residual regression attempts to predict the residual map

(the difference of density maps) between the input image and the

support image. By predicting various residual maps based on di-

verse support images, the generalization capability is boosted.

on deep learning by predicting a density map and aggregat-

ing to a final count. Some of them attempt to deal with scale

variations via different network structures with different re-

ceptive field sizes. Some of the methods utilize contextual

information to improve the performance.

Unfortunately, most of the algorithms concentrate solely

on the appearance of a single image but ignore the correla-

tion information between image samples. Existing research

works for other problems have shown that more intrinsic

features can be learned by comparing samples to mine the

correlation knowledge [29, 31]. To this end, we propose a

residual regression framework, within which more effective

features can be obtained by learning the difference between

samples. The proposed algorithm can be considered as a

data-driven learning method with prior knowledge [32, 6].

To be specific, we propose a novel algorithm to predict the

density map by taking into account not only the appear-

ance but also the residual maps (i.e., the difference between

density maps) between the input image and labeled images

from a support set (shown in Fig. 1). As the support im-

ages are with different levels of crowdedness, comparing

the concerned image with diverse support images will im-

prove the generalization ability in the case of unseen sce-

narios. The final density map is estimated by fusing density

maps that are predicted using both appearance and residual

maps.
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Furthermore, the semantic prior is effective for eliminat-

ing noisy areas, since the scenarios of crowd counting are

usually of semantic structures (e.g., there usually are sky,

buildings, and trees). Observing this, the density of the pix-

els belonging to sky, wall, or trees should be close to zero.

In this paper, we show how to utilize this kind of semantic

prior effectively to improve crowd counting, even without

fine-tuning the employed segmentation network to yield the

semantic information. Specifically, we decrease the pre-

dicted density in the area without people by a factor. The

weight of the area without people is also decreased while we

calculate the loss. By doing so, the network is constrained

to concentrate more on the area containing people, so the

noisy false alarms can be eliminated to some extent.

Previous work has also shown that high-quality density

maps are beneficial to the performance of crowd counting

[27]. Inspired by this, we adopt an adversarial loss to im-

prove the realism of the predicted density maps by discrimi-

nating them against real density maps. Also, we increase the

resolution of the predicted density maps, and the quality-

improved density maps are helpful for improving crowd

counting performance .

In the experiments, the proposed approach outperforms

several state-of-the-art algorithms and shows a satisfac-

tory generalization capability when transferring to unseen

scenes without fine-tuning.

Our contributions are three-fold: 1) We propose a novel

approach of residual regression learning by comparing the

concerned image with a set of support images to improve

the generalization capability in the case of unseen scenar-

ios. 2) We incorporate a semantic prior to eliminate the side

effect of noisy false alarms in the predicted density maps. 3)

An adversarial loss is adopted to enhance the quality of the

predicted density maps, further improving the crowd count-

ing performance.

2. Related Works

In general, most of the traditional algorithms are based

on people detection and crowd number regression, while re-

cent deep learning approaches typically count by estimating

density map and then aggregating to final count numbers.

Most conventional detection algorithms detect either the

whole body or parts for counting by detection [13] or track-

ing [18, 19]. [13] counts crowd by detecting human heads

and shoulders. A shape learning process is proposed to de-

tect and count individuals by [5]. Although detection has

been advanced significantly with the development of deep

learning, the detection of pedestrians under highly con-

gested scenarios is still challenging. Apart from explicit de-

tection, methods are developed attempting to count crowd

by directly mapping a crowd image to a number. In these

methods, hand-crafted features, like texture, gradient, fore-

ground, and edge, are frequently used as low-level cues.

Then, linear regression, random forest, or Gaussian process

(GP) are utilized to predict the final crowd number. For in-

stance, [3] develops a method counting the crowd number

by holistic features and GP regression. A prior distribu-

tion is introduced in the proposed Bayesian Poisson regres-

sion to estimate the size of inhomogeneous crowds by [4].

However, [9] has shown that single features are insufficient

to count crowd numbers in extremely crowd images due to

large variations, clutters, and occlusions.

More recently, density map estimation of crowd images

becomes more popular. [12] proposes to count local patches

and then integrates them to the final count, which incorpo-

rates spatial information better for accurate counting. Mo-

tivated by this, most recent deep learning based approaches

predict density maps and achieve a notable progress. To

cope with density variations, a Multi-column Convolutional

Neural Network (MCNN) composed of different CNNs

with different kernel sizes is proposed by [35]. Detection

and regression approaches are combined together to han-

dle different kinds of scenes by [15]. Multiple CNNs with

different receptive field sizes are proposed to deal with den-

sity variations, and a switch network is developed to choose

the best one [23]. [34] proposes a scale-adaptive network

which combines multi-scale features extracted from differ-

ent layers to deal with scale and perspective changes. An In-

crementally Growing CNN (IG-CNN) is developed to cope

with large diversities in crowd images by [1]. [27] proposes

to utilize global and local contexts to improve the perfor-

mance. They discovered that high-quality density maps are

useful for further decreasing the counting error. To improve

the generalization ability, [25] trains a pool of decorrelated

regressors. [17] learns from unlabeled data through prior

knowledge for crowd counting. [33] proposes to transfer a

well-trained model to a new target scene by a data-driven

fine-tuning method. For more related works, the readers

may refer to [28].

In contrast to previous approaches that predicted from

a single image, our proposed approach mines the exem-

plar correlation knowledge among diverse samples, there-

fore generalizing better in unseen scenarios.

3. Our Approach

Typically, traditional methods predict density maps

solely by the appearance of an input image, but ignore the

relationship between samples. We argue that the correla-

tion between samples is important. Therefore, we propose

a residual regression algorithm which fuses appearance and

correlation knowledge effectively. As shown in Fig. 2, den-

sity maps are predicted by simultaneously considering ap-

pearance and comparing the input image with a set of sup-

port images, and the final prediction is estimated by fusing

these cues. During the estimation, a semantic prior is intro-

duced to eliminate the false alarms in the area without peo-
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Figure 2. The schematic of the proposed method. Residual regression predicts a residual map (i.e., the difference between density maps)

between the input image and the support image. All the residual predictions are fused, and the final predicted map is calculated based on

the fused residual prediction and the appearance-based prediction from the input image. Black arrows indicate data flow, while green, red,

and purple two-way arrows respectively represent the appearance loss, the residual loss, and the final fusion loss (best viewed in color).

ple. Furthermore, we adopt an adversarial loss to improve

the quality of density maps.

3.1. Counting by Residual Regression

In this section, we first present a traditional appearance-

based counting model with a customized modification.

Then, we propose a residual regression algorithm, in which

the density map is predicted by comparing the input image

with a labeled exemplar image. Finally, the appearance-

based and residual-based predictions are fused to yield the

final prediction.

3.1.1 Appearance-Based Prediction

In our practice, we adopt two typical networks, MCNN [35]

and CSRNet [14], respectively, as the backbone networks,

to predict the density map by sole appearance of the image.

Given an image Xi as input, the network outputs a predicted

density map. Formally, the appearance-based prediction is

as follows,

Ŷ a
i = Fa(Xi), (1)

where Xi is the input image, Ŷ a
i denotes the appearance-

based prediction, and Fa (·) is the mapping function ap-

proximated by the modified appearance-based network.

3.1.2 Residual-Based Prediction

Exemplar correlation is exploited via a novel regression ap-

proach by comparing between samples (see Fig. 2). First, a

residual map is estimated from deep features extracted from

the input image and an exemplar support image. Then the

density map is calculated by adding the estimated residual

map and the ground-truth density map of the support image.

Specifically, given a support set containing k labeled

images {(Xs
1
, Y s

1
) , (Xs

2
, Y s

2
) , · · · , (Xs

k, Y
s
k )}, features are

firstly extracted by the appearance-based network. Then,

the extracted deep features from the input image and a sup-

port image are concatenated and fed into a correlation learn-

ing network to predict a residual map between density maps

of the input and support images. Based on the predicted k

residual maps and the corresponding ground-truth density

maps of the support images, k estimated density maps based

on residual learning can be calculated and consequently

fused.

Formally, given an input image Xi and a labeled support

image
(

Xs
j , Y

s
j

)

, the density map with regard to the support

image with residual regression is

Ŷ
rj
i = Fr

(

fa (Xi) , fa
(

Xs
j

))

+ Y s
j , (2)

where Ŷ
rj
i is the density map predicted with the j-th sup-

port image Xs
j . Fr (·, ·) denotes the residual map prediction

network, and fa (·) denotes the feature extraction function

defined by the appearance module (without linear function)

described above.

Since we have k density maps predicted by comparing

with different support images, we thus fuse them to generate

the final residual-based density map Ŷ r
i ,

Ŷ r
i = Frf

(

Ŷ r1
i , Ŷ r2

i , · · ·, Ŷ rk
i

)

, (3)

where Frf is a fusion network.
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Table 1. The detailed configuration of the modified appearance

module network Fa.

MCNN CSRNet

C(16,9)-P C(20,7)-P C(24,5)-P 2×C(64,3)-P

C(32,7)-P C(40,5)-P C(48,3)-P 2×C(128,3)-P

C(16,7) C(20,5) C(24,3) 3×C(256,3)-P

C(16,7) C(20,5) C(24,3) 3×C(512,3,2)

T(8,4) T(10,4) T(12,4) 3×C(512,3,2)

T(4,4) T(5,4) T(6,4)

C(256,3,2)

C(128,3,2)

C(64,3,2)

C(1,1) C(1,1)

3.1.3 Density Maps Fusion

The density maps from the appearance and exemplar cor-

relation are fused together to obtain the final density map.

Instead of simply utilizing a 1 × 1 kernel, we propose a

sophisticated network to embed spatial context effectively.

Formally, the final prediction Ŷi is estimated by fusing ap-

pearance and residual based predictions as follows,

Ŷi = Fff

(

Ŷ a
i , Ŷ

r
i

)

, (4)

where Fff (·, ·) is the final fusion network.

3.2. Counting with Semantic Prior

In this section, we show how to effectively utilize a se-

mantic prior to boost the performance of the proposed resid-

ual regression model for crowd counting. Intuitively, the

pedestrian density of the semantic area without people, such

as wall, trees, and sky, should be close to zero. To employ

such a kind of semantic prior, we firstly generate the seman-

tic map of the given image. We adopt a popular encoder-

decoder model1 pre-trained on the ADE20K dataset [36] to

generate semantic maps. Note that, pixels in the generated

semantic map are classified into two sets: the area without

pedestrian and the area potentially containing pedestrian.

Only if the confidence score is high enough, would the pix-

els be classified as the area without pedestrian. Otherwise,

the pixels are classified as the area potentially containing

pedestrian. The semantic map, which is the same size as

the predicted density map, serves as an importance map for

each pixel.

Our goal is to eliminate the side effect from false alarms

in the area containing no people and simultaneously focus

on the area potentially occupied by pedestrian. To main-

tain the attention in the area with pedestrian, we set the

area pixel weight to 1. Ideally, we could naively set the

area pixels without pedestrian to zero if the semantic map is

1https://github.com/CSAILVision/semantic-segmentation-pytorch

Table 2. The detailed configuration of our proposed network. To

encode multi-scale features, we use 3 branches similar to MCNN.

Branch Fusion

Residual map

predictor Fr

C(16,3)

C(16,7)-C(8,5)-C(1,3)C(8,5)

C(4,7)

Residual map

fusion Frf

C(8,1)

C(1,3)C(4,3)

C(2,5)

Final map

fusion Fff

C(8,1)

C(1,3)C(4,3)

C(2,5)

generated accurately. However, as we directly utilize a seg-

mentation network without fine-tuning on our dataset (we

do not have segmentation labels for the crowd images), the

semantic prediction may not be sufficiently accurate. To

remedy this problem, we set the weight of pixels containing

no pedestrian as a constant value σ ∈ (0, 1], to decrease the

density of the area containing no pedestrian by a factor in-

stead of directly setting it to zero. This weighting scheme

with discrimination is conducted via a semantic MSE metric

which will be described later. By doing so, the side effect

of false alarms like trees can be eliminated.

3.3. Network Architecture

The functions in Eqs. (1) - (4) are constructed as four

components of a network: an appearance-based module

(MCNN or CSRNet) Fa (·) learning deep features, a resid-

ual regressor Fr (·, ·) predicting the residual map, a residual

map fusion module Frf fusing density maps predicted from

different support images, and a multi-cue fusion network

Fff (·, ·) conducting the fusion of density maps in terms of

both appearance and residual regression into the final esti-

mation.

The appearance-based modules are illustrated in Table

1. Here, C denotes a convolutional layer and the num-

bers in braces are the filter number, filter size, and dilation

parameters (default=1). P represents a max-pooling layer

which decreases resolution to half of the preceding layer.

T is the fractionally-stridden convolutional layer which in-

creases the resolution by a factor of two. PRelu [7] activa-

tion is appended to every convolutional layer except the last

layer for activation. The remaining modules in the network

are given in Table 2.

3.4. Loss Function

Given N training samples {Xi}
N
i=1

, their correspond-

ing semantic maps {Mi}
N
i=1

, and the ground-truth density

maps{Yi}
N
i=1

, the loss function of the proposed method is
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Image A A+RR A+RR+SP Ground-truth

Figure 3. The qualitative comparison between variants of our approach: (A) Appearance, (A+RR) Appearance + Residual Regression, and

(A+RR+SP) Appearance + Residual Regression + Semantic Prior.

defined as follows,

L = La + αLr + βLff + ηLad, (5)

where La, Lr, Lff , and Lad are the appearance loss, resid-

ual loss, final fusion loss, and adversarial loss.

3.4.1 Semantic MSE

As mentioned in Sec. 3.2, a semantic prior based MSE

metric is proposed to decrease the influence due to po-

tential false alarms. Specifically, the proposed Semantic

MSE counts the area without pedestrian with lower weights.

Given a prediction Ŷi, its semantic map Mi, and the corre-

sponding ground-truth Yi, the semantic MSE (S-MSE) is

fsmse(Ŷi, Yi,Mi) = ‖Ŷi ⊗Mi − Yi ⊗Mi‖
2, (6)

where the value of elements in Mi is either 1 (corresponding

to pixels potentially containing person) or σ (corresponding

to pixels without person), and ⊗ denotes the element-wise

multiplication.

3.4.2 Appearance Loss

The appearance loss measures the discrepancy between the

predicted density map Ŷ a
i and the ground-truth density map

via S-MSE,

La =

N
∑

i=1

fsmse(Ŷ
a
i , Yi,Mi) . (7)

3.4.3 Residual Loss

Similar to the appearance loss, the semantic MSE is utilized

to measure the difference between residual-based prediction

and the ground-truth. Different from the appearance loss,

the residual loss is rather complex since we obtain k + 1
density maps as {Ŷ r1

i , Ŷ r2
i , · · ·, Ŷ rk

i , Ŷ r
i } based on k sup-

port images and the fusion module. The residual loss is

defined as

Lr =

N
∑

i=1

{[

k
∑

j=1

fsmse(Ŷ
rj
i , Yi,Mi)]+fsmse(Ŷ

r
i , Yi,Mi)}.

(8)

3.4.4 Final Fusion Loss

The final fusion loss is to measure the distinction between

the final prediction after fusion and the ground-truth,

Lff =

N
∑

i=1

fsmse(Ŷi, Yi,Mi). (9)

4040



Table 3. Experimental results on ShanghaiTech A. The arrows next

to the metrics indicate the direction of better performance, i.e., ↓
means that smaller values are better. The best results are shown in

bold, and the second best results are indicated by underline. This

also applies to the following tables.

Method MAE ↓ MSE ↓
Cross-scene [33] 181.8 277.7

MCNN [35] 110.2 173.2

FCN [20] 126.5 173.5

Cascaded-MTL [26] 101.3 152.4

Switching-CNN [23] 90.4 135.0

CP-CNN [27] 73.6 106.4

ASACP [24] 75.7 102.7

Top-Down [22] 97.5 145.1

L2R [17] 73.6 112.0

CSRNet [14] 68.2 115.0

IG-CNN [21] 72.5 118.2

ic-CNN [21] 68.9 117.3

SANet (patch) [2] 67.0 104.5

SANet (image) [2] 88.1 134.3

SCNet [30] 71.9 117.9

Spatial-Aware [16] 69.3 96.4

Image Pyramid [10] 80.6 126.7

Ours (MCNN, A) 86.97 138.46

Ours (MCNN, A+RR) 79.72 119.9

Ours (MCNN, A+RR+SP) 75.9 118.1

Ours (MCNN, full) 72.6 114.3

Ours (CSRNet, A) 68.2 115.0

Ours (CSRNet, A+RR) 64.8 98.4

Ours (CSRNet, A+RR+SP) 64.2 98.0

Ours (CSRNet, full) 63.1 96.2

3.4.5 Adversarial Loss

To improve the quality of the predicted density map, an

adversarial loss is exploited during training. Specifically,

a shallow network is developed as the discriminator. The

network configuration is C(64,3)-C(128,3)-P-C(256,3)-P-

C(256,3)-C(256,3)-P-C(1,1)-Sigmoid.

Based on the developed discriminator, the adversarial

loss is

Lad =

N
∑

i=1

(

log(Yi)− log(Ŷi)
)

, (10)

where Ŷi and Yi are the final predicted and the ground-truth

density maps.

4. Experiments

We firstly present the implementation details, then il-

lustrate the dataset & metrics, and subsequently report the

experimental results, including ablation study, comparison

with the state of the art, and cross-dataset evaluation.

Table 4. Experimental results on ShanghaiTech B.

Method MAE↓ MSE↓
Cross-scene [33] 32.0 49.8

MCNN [35] 26.4 41.3

FCN [20] 23.76 33.12

Cascaded-MTL [26] 20.0 31.1

Switching-CNN [23] 21.6 33.4

CP-CNN [27] 20.1 30.1

DecideNet [15] 20.75 29.42

ASACP [24] 17.2 27.4

Top-Down [22] 20.7 32.8

L2R [17] 14.4 23.8

CSRNet [14] 10.6 16.0

IG-CNN [1] 13.6 21.1

ic-CNN [21] 10.7 16.0

SANet [2] 8.4 13.6

SCNet [30] 9.3 14.4

Spatial-Aware [16] 11.1 18.2

Image Pyramid [10] 10.2 18.3

Ours (MCNN) 15.5 23.1

Ours (CSRNet) 8.72 13.56

4.1. Implementation Details

Density Map Synthesis. We synthesize density maps as

ground truth following [35].

Generation of Support Set. The support set plays an

important role in the proposed approach. Images in the set

should exhibit as broad coverage, in terms of both crowd-

edness and spatial structure, as possible to boost the gen-

eralization ability. We first extract spatial crowd features

from each training image. Specifically, we divide the im-

age space into grid regions. The count value of each grid is

the summation of pixel values in the covered region. Then

these count values are concatenated as a vector as the crowd

feature encoding the spatial information. Subsequently, the

training images are grouped into several clusters by the k-

means algorithm. For each cluster, we select the image

which is closest to the cluster centroid as one support im-

age in the set. The number of support images is set to 3,

as empirically increasing the number leads to an increase of

computational cost, albeit with a very limited performance

boost.

Training. To stabilize the training of the proposed net-

work, we firstly train appearance based module in the net-

work and then the whole network is optimized with the pre-

trained appearance based network. Note that, the learning

rate is set to 0.0001 during the training of the appearance

based network. When training the whole network, the learn-

ing rate for other components and the appearance module is

0.0001 and 0.00001 respectively. Empirically, σ is set to

0.5. α, β, and η are set to 1, 1, and 1× 10−12, respectively.
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Table 5. Experimental results on WorldExpo. MAE is used for

evaluation. Avg. is the average result over all testing scenes.

Method S1 S2 S3 S4 S5 Avg.

Cross-scene [33] 9.8 14.1 14.3 22.2 3.7 12.9

MCNN [35] 3.4 20.6 12.9 12.0 8.1 11.6

SwitchingCNN [23] 4.4 15.7 10.0 11.0 5.9 9.4

CP-CNN [27] 2.9 14.7 10.5 10.4 5.8 8.86

CNN-pixel [11] 2.9 18.6 14.1 24.6 6.9 13.4

Body structure [8] 4.1 21.7 11.9 11.0 3.5 10.5

DecideNet [15] 2.0 13.1 8.9 17.4 4.8 9.2

ASACP [24] 2.8 14.1 9.6 8.1 2.9 7.5

Top-Down [22] 2.7 23.4 10.7 17.6 3.3 11.5

CSRNet [14] 2.9 11.5 8.6 16.6 3.4 8.6

IG-CNN [1] 2.6 16.1 10.2 20.2 7.6 11.3

ic-CNN [21] 17.0 12.3 9.2 8.1 4.7 10.3

SANet [2] 2.6 13.2 9.0 13.3 3.0 8.2

SpatialAware [16] 2.6 11.8 10.3 10.4 3.7 7.76

ImagePyramid [10] 2.5 16.5 12.2 20.5 2.9 10.9

Ours (MCNN) 2.2 11.1 11.3 15.8 2.8 8.7

Ours (CSRNet) 2.9 15.0 7.2 14.7 2.6 8.5

4.2. Datasets & Metrics

The evaluation is performed on three popular datasets:

ShanghaiTech [35], Expo [33] and UCF 50 [9]. The Shang-

haiTech dataset includes two parts A and B. ShanghaiTech

A consists of 482 images with diverse resolutions and the

crowd number varies from 33 to 3139. ShanghaiTech B

contains 716 images (768×1024), and the crowd number

varies from 9 to 518. WorldExpo is a real-world surveil-

lance dataset containing 3980 labeled frames (576×720).

UCF 50 is a very challenging dataset consisting of 50 ex-

tremely congested images (average of 1279 people, maxi-

mum of 4535) with different resolutions.

To provide quantitative evaluation, metrics of the Mean

Absolute Error (MAE) and the Rooted Mean Squared Error

(RMSE) are utilized:

MAE =
1

K

K
∑

i=1

|Ĉi−Ci|, RMSE =

√

√

√

√

1

K

K
∑

i=1

‖Ĉi − Ci‖2,

(11)

where K is the size of the testing size. Ĉi and Ci are the

predicted and ground-truth crowd counts, as computed from

the corresponding density maps.

4.3. Ablation Study

An ablation study is performed on ShanghaiTech A to

evaluate the effectiveness of each module. Based on MCNN

and CSRNet, the following variants are compared:

1) Appearance (A): a modified version of MCNN or

CSRNet.

2) Appearance + Residual Regression (A+RR): the com-

bination of appearance and residual regression modules.

Table 6. Experimental results of cross-dataset evaluation.

Method

Shanghai

Tech B
Expo UCF 50

MAE MSE MAE MSE MAE MSE

MCNN [35] - - - - 397.6 624.1

L2R [17] - - - - 337.6 434.3

Appearance 44.7 87.7 62.2 85.3 358.2 562.1

Ours(MCNN) 40.0 68.5 30.4 42.5 355.0 560.2

3) Appearance + Residual Regression + Semantic Prior

(A+RR+SP): the model utilizing appearance, residual re-

gression and semantic prior.

4) Ours (full): our proposed approach trained with ad-

versarial loss.

The results of these variants are reported in Table 3. We

observe that,

1) A+RR outperforms A with a significant advantage, in-

dicating that after mining exemplar correlation knowledge,

the network is more effective. Moreover, the performance

of the sole A model is improved if compared with the orig-

inal MCNN [35] – the learned deep features become more

powerful after joint optimization with the pair-wise corre-

lation information. Fig. 3 shows qualitative results of four

exemplar images. The residual regression module makes

the estimated density map closer to the ground truth.

2) The performance is improved comparing A+RR+SP

with A+RR, suggesting that the embedded semantic prior

is effective to eliminate false alarms. This is also confirmed

by the comparison between the third and the fourth columns

in Fig. 3. The embedded semantic prior eliminates false

density in the area of sky (see the top row) and the tree (see

the second and the third rows).

3) Our full method additionally reduces the MAE and

MSE values, which demonstrates the effectiveness of the

introduced adversarial loss.

4) With the replacement of MCNN by CSRNet, we

achieve results which are similar to those of MCNN, show-

ing that the proposed framework is effective even when

based on a strong baseline.

4.4. Comparison with State­of­the­Arts

We conduct evaluation on ShanghaiTech Part A & B,

WorldExpo and compare the results with the state-of-the-

art algorithms shown in Table 3-5.

1) On ShanghaiTech A, Table 3 shows the proposed

method achieves the best performance in terms of MAE

and MSE which indicates the advantage of the proposed ap-

proach over others.

2) Similarly, on ShanghaiTech B, the proposed algorithm

achieves better performance than most of the algorithms

except SANet [2] as shown in Table 4. It is important to

note that, the evaluation method in SANet is different from

the standard one in the literature. The best performance of
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Ground truth: 199

Estimation: 180.1

Ground truth: 178
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Figure 4. Exemplar images (top) of the employed datasets, the corresponding predictions (middle) by the proposed approach, and the

ground-truth (bottom).

SANet is achieved by its patch-level evaluation. However,

as Table 3 shows, when using the standard image-level eval-

uation, the performance of SANet degrades severely. Thus

the performance of SANet using the standard evaluation

protocol is expected to drop on the ShanghaiTech B dataset.

Nevertheless, our method still achieves comparable perfor-

mance as SANet (patch).

3) The dataset of WorldExpo is proposed to evaluate the

generalization ability of algorithms in different scenarios.

As shown in Table 5, the proposed method achieves the best

performance on Scene 3 & 5 revealing that the proposed

method can potentially transfer better to unseen scenarios.

In most cases, the proposed method achieves slightly su-

perior performance compared to the start-of-the-art meth-

ods. We further analyze the qualitative results shown in

Fig. 4. After correlation knowledge and semantic prior are

included, density map estimation becomes more accurate.

However, there also exists failure case. The fire hydrant in

the example (the third column) is incorrectly classified as

crowds since the appearance of fire hydrant is very similar

to a single person. Therefore, mining hard negative exam-

ples can be further investigated in the future.

4.5. Cross­Dataset Evaluation

When applying crowd counting methods in real-world

applications, the generalization ability is very important to

ensure satisfactory performance in case of unseen scenes.

To further evaluate the generalization ability of the pro-

posed method, a cross-dataset experiment is conducted.

In this experiment, the source domain is ShanghaiTech

A and the other datasets served as the target domains. The

model is trained with ShanghaiTech A and tested on other

datasets without fine-tuning. We report only the perfor-

mance of full method with MCNN in Table 6 as UCF 50

contains only gray-scale images while CSRNet is trained

with RGB images. Note that, for MCNN [35] and L2R [17]

we cannot report results for ShanghaiTech B and Expo, as

their models/codes are not public and we cannot find other

source to quote from. The proposed method shows better

performance than sole Appearance model based on MCNN

[35], revealing that the generalization ability is improved

after the appearance and residual regression models are

jointly optimized. Compared with MCNN , the proposed

approach achieves better performance on UCF 50 dataset.

However, L2R is slightly superior to ours since additional

data are used during training.

5. Conclusion

In this paper, a novel residual regression approach was

proposed to incorporate correlation knowledge. This ap-

proach can learn more effective features, and shows a better

generalization capability after joint optimization of appear-

ance and correlation. In addition, the semantic prior was

leveraged to compute the loss function, which was demon-

strated to be effective to eliminate false alarms in crowd

images. To further improve the quality of the predicted den-

sity maps, the adversarial loss was employed to regularize

the predicted density maps. In the future exploration, crowd

images could be synthesized to help the network transfer to

unseen scenarios.
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