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Abstract

Recently, the state-of-the-art models for image caption-

ing have overtaken human performance based on the most

popular metrics, such as BLEU, METEOR, ROUGE and

CIDEr. Does this mean we have solved the task of image

captioning? The above metrics only measure the similarity

of the generated caption to the human annotations, which

reflects its accuracy. However, an image contains many

concepts and multiple levels of detail, and thus there is a

variety of captions that express different concepts and de-

tails that might be interesting for different humans. There-

fore only evaluating accuracy is not sufficient for measuring

the performance of captioning models – the diversity of the

generated captions should also be considered. In this paper,

we proposed a new metric for measuring diversity of image

captions, which is derived from latent semantic analysis and

kernelized to use CIDEr similarity. We conduct extensive

experiments to re-evaluate recent captioning models in the

context of both diversity and accuracy. We find that there is

still a large gap between the model and human performance

in terms of both accuracy and diversity, and the models that

have optimized accuracy (CIDEr) have low diversity. We

also show that balancing the cross-entropy loss and CIDEr

reward in reinforcement learning during training can effec-

tively control the tradeoff between diversity and accuracy of

the generated captions.

1. Introduction

The task of image captioning is challenging and draws

much attention from researchers in the fields of both com-

puter vision and natural language processing. A large vari-

ety of models have been proposed to automatically generate

image captions, and most of the models are engaged in im-

proving the accuracy of the generated captions as measured

by the current metrics, such as BLEU 1-4 [22], METEOR

[7], ROUGE [16], CIDEr [28] and SPICE [1]. However,

another important property, the diversity of captions gen-

erated for a given image, receives less attention. Gener-

ally, diversity refers to the differences among a set of cap-
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through the wild dry 
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Figure 1: An overview of our diversity metric. Given a set of cap-

tions from a method, we first construct the self-similarity matrix

K, consisting of CIDEr [28] scores between all pairs of captions.

The diversity score is computed from the singular values of K. A

higher diversity score indicates more variety in the set of gener-

ated captions, such as changes in the level of descriptive detail and

inclusion of removal of objects. The accuracy (average CIDEr) of

the captions with respect to the human ground-truth is on the bot-

tom. For human annotations, this is the leave-one-out accuracy.

tions generated by a method for a single image, and can

be categorized into three levels: (1) word diversity refers

to only changes of single words that do not change the

caption’s semantics, e.g., using synonyms in different cap-

tions; (2) syntactic diversity refers to only differences in

the word order, phrases, and sentence structures, such as

pre-modification, post-modification, redundant and concise

descriptions, which do not change the caption’s concept.

(3) semantic diversity refers to the differences of expressed

concepts, including level of descriptive detail, changing of

the sentence’s subject, and addition/removal of sentence ob-

jects. For example, in Figure 1, the human captions 2 and

5 have syntactic diversity, as they both express the same

concept of a zebra near a tree in a grass field using differ-

ent word orderings. In contrast, captions 2 and 3 exhibit

semantic diversity, as caption 3 describes the type of grass

field (“lush dry”) and omits “near a tree” as unimportant.

Ideally, a caption system should be able to generate cap-

tions expressing different concepts in the image, and hence

in this paper we focus on measuring semantic diversity.

The motivations for considering diversity of image cap-
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tions are as follows. First, an image may contain many con-

cepts with multiple levels of detail — indeed, an image is

worth a thousand words — and thus an image caption ex-

presses a set of concepts that are interesting for a particu-

lar human. Hence, there is diversity among captions due

to diversity among humans, and an automatic image cap-

tioning method should reflect this. Second, only focusing

on increasing the caption accuracy will bias the captioning

method to common phrases. For example, Figure 1 shows

the set of captions generated by two models. Model 2 is

the best when only considering accuracy. However, Model

2 just repeats the same common phrases, providing no par-

ticular additional details. In contrast, Model 1 recognizes

that there are trees in the image and the the grass is dry,

which also occurs in the human annotations. It even recog-

nizes “walking”, which does not appear in the human an-

notations, but is a plausible description. Thus, to mimic

the ability of humans, the captioning models should also

have the ability of generating diverse captions. Third, from

the machine learning viewpoint, captioning models are typ-

ically trained on datasets where each image has at least 5

ground-truth captions (e.g., MSCOCO), and thus caption-

ing models should also be evaluated on how well the learned

conditional distribution of captions given an image approx-

imates that of the ground-truth. In particular, while the cap-

tion accuracy measures the differences in the modes of the

distributions, the caption diversity measures the variance of

the distribution.

Recently, while a few works have focused on generat-

ing both diverse and accurate captions, such as conditional

variational auto-encoders (CVAE) [30] and conditional gen-

erative adversarial network (CGAN) [5, 26], there is not a

metric to well evaluate the diversity of captions. In [5], the

diversity of captions is shown only qualitatively. [26, 30]

evaluate the diversity of captions in three ways: 1) the per-

centage of novel sentences; 2) the percentage of unique

uni-grams and bi-grams in the set of captions; 3) mBLEU,

which is the average of the BLEU scores between each cap-

tion and the remaining captions. However, it is difficult to

define a novel sentence, and only considering the percent-

age of unique uni-grams and bi-grams ignores the relation-

ship between captions, e.g., the same n-gram could be used

to construct sentences with different meanings. Because

mBLEU uses the BLEU score, it aggregates n-grams over

all the remaining captions, which obfuscates differences

among the individual captions, thus under-representing the

diversity. For example, the two caption sets, C1 ={“zebras

grazing grass”, “grazing grass”, “zebras grazing”} and

C2 ={“zebras grazing”, “zebras grazing”, “zebras graz-

ing”}, obtain the same mBLEU of 1.0. However, we may

consider that C1 is more diverse, because each of its captions

expresses different concepts or details. In contrast, captions

in C2 describe exactly the same thing. Hence, considering

all the pairwise relationships among captions will better re-

flect the structure of the set of captions. Moreover, BLEU is

not a good metric for measuring semantic differences, since

phrase-level changes and semantic changes may lead to the

same BLEU score (e.g., see Table 1).

In this paper, we propose a diversity measure based on

pairwise similarities between captions. In particular, we

form a matrix of pairwise similarities (e.g., using CIDEr),

and then use the singular values of the matrix to measure

the diversity. We show that this is interpretable as apply-

ing latent semantic analysis (LSA) on the weighted n-gram

feature representation of the captions to extract the topic-

structure of the set of captions, where more topics indicates

more diversity in the captions. The key contributions of this

paper are three-fold: 1) we proposed a new metric for eval-

uating diversity of sets of captions, and we re-evaluate ex-

isting captioning models via considering both diversity and

accuracy. Moreover, our proposed metric shows a stronger

correlation to human evaluation than mBLEU; (2) we de-

velop a framework that enables a tradeoff between diverse

and accurate captions via balancing the rewards in rein-

forcement learning (RL) and the cross-entropy loss; (3) ex-

tensive experiments are conducted to demonstrate the ef-

fectiveness of the diversity metric and the effect of the loss

function on diversity and accuracy – we find that RL and

adversarial training are different approaches that provide

equally satisfying results.

2. Related Work

Image Captioning. Early image captioning models nor-

mally contain 2 stages: 1) concept detection, 2) translation.

In the first stage, object categories, attributes and activities

are detected, then the translation stage uses the labels to

generate sentences. The typical concept detection models

are conditional random fields (CRFs) [9, 13], support vec-

tor machines (SVMs) [15] or convolutional neural networks

(CNNs) [8], and the translation model is a sentence template

[9] or n-gram model [15].

Recently, the encoder-decoder models, e.g., neural im-

age captioning (NIC) [29], spatial attention [34] and adap-

tive attention [19], trained end-to-end have obtained much

better results than the early models based on concept detec-

tion and translation. NIC [29] translates images into sen-

tences via directly connecting the inception network to an

LSTM. To improve NIC, [34] introduces a spatial attention

module, which allows the model to “watch” different areas

when it predicts different words. [10, 33, 35, 36] use image

semantics detected using an additional network branch. In

[19], a sentinel gate decides whether the visual feature or

the semantic feature should be used for prediction. Instead

of employing LSTM decoders for sentences, [2, 31, 32] ap-

ply convolutional decoders, which achieves faster training

process and comparable results.

Both LSTM and convolutional models are trained using
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Modification Caption B1 B2 B3 B4 M R C/10 S

Reference a group of people are playing football on

a grass covered field

1 1 1 1 1 1 1 1

Word-level a couple of boys are playing soccer on

a grass covered field

0.750 0.584 0.468 0.388 0.387 0.750 0.261 0.333

Phrase-level some guys are playing football on a

grassy ground

0.417 0.389 0.357 0.317 0.310 0.489 0.441 0.133

Sentence-level on a grass covered field a group of peo-

ple are playing football

1.000 0.953 0.899 0.834 0.581 0.583 0.676 0.941

Redundancy a group of people in red soccer suits are

playing football on a grass covered field

0.716 0.683 0.644 0.598 0.429 0.836 0.496 0.818

Conciseness a group of people are playing football 0.583 0.564 0.542 0.516 0.526 0.774 0.482 0.714

Average 0.693 0.635 0.582 0.531 0.447 0.693 0.471 0.588

Semantic change a group of people are watching TV 0.417 0.389 0.357 0.317 0.270 0.553 0.072 0.429

Table 1: The similarity scores between a reference caption and a modified caption using different evaluation metrics. The caption in the

first row is the reference caption, and the next five captions change different parts of the sentence (highlighted in bold) while keeping the

same concepts. “Average” is the average metric value over these 5 modified captions. The bottom row shows an incorrect caption and the

metric scores. B1-4, M, R, C/10, and S are BLEU1-4, METEOR, ROUGE, CIDEr divided by 10 (so that the maximum is 1), and SPICE.

cross-entropy. In contrast, [17, 23] directly improve the

evaluation metric using reinforcement learning (RL). They

also show that improving the CIDEr reward function also

improves other evaluation metrics, but not vice versa. In-

stead of using metric rewards, [18, 20] employ the retrieval

reward to generate more distinctive captions.

Generally, the above models are used to generate a single

caption for one image, whereas [5, 26] use CGAN to gener-

ate a set of diverse captions for each image. The generator

uses an LSTM to generate captions given an image, and the

evaluator uses a retrieval model to evaluate the generated

captions. The generator and evaluator are jointly trained

in adversarial manner using policy gradients1. In the infer-

ence stage, latent noise vectors are sampled from a Gaus-

sian distribution, generating different captions. CVAE [30]

is another model that is able generate diverse caption by

sampling the latent noise vector.

Evaluation Metrics. The most popular metrics are

BLEU [22], METEOR [7], ROUGE [16], which are met-

rics from machine translation and document summariza-

tion, and CIDEr [28] and SPICE [1], which are metrics

specific to image captioning. BLEU, METEOR, ROUGE

and CIDEr are based on computing the overlap between

the n-grams of a generated caption and those of the hu-

man annotations. BLEU considers the n-gram precision,

ROUGE is related to n-gram recall, which benefits long

texts, and METEOR takes both precision and recall of uni-

grams, while also applying synonym matching. CIDEr uses

TF-IDF weighted n-grams to represent captions and calcu-

lates the cosine similarity.

Only considering n-gram overlap seems to ignore se-

mantics of the captions. SPICE uses scene graphs [11, 24]

to represent images – human annotations and one generated

1This is similar to RL models, but RL models are trained by maximiz-

ing the rewards, which is not adversarial training.

caption are first parsed into scene graphs, which are com-

posed of object categories, attributes and relationships, and

the F1-measure is computed between the two scene graphs.

However, SPICE is highly dependent on the accuracy of the

parsing results. [12] proposed a metric based on word2vec

[21] and word mover distance (WMD) [14], which could

leverage semantic information, but depends on the quality

of word2vec. Recently, [4] proposed a learned metric that

uses a CNN and an LSTM to extract features from images

and captions, and then uses a classifier to assign a score

that indicates whether the caption is generated by a human.

While this metric is robust, it requires training and data aug-

mentation, and the evaluation procedure takes more time.

Table 1 shows an example of similarity metrics between

a reference caption and 5 modified captions that have the

same semantic meaning, and an incorrect caption with dif-

ferent meaning. All metrics are less sensitive (have higher

values) to sentence-level changes (due to the use of n-

grams), in particular BLEU, ROUGE and SPICE. Further-

more, all metrics show sensitivity to word-level or phrase-

level changes. Overall, CIDEr and METEOR have rela-

tively low average metric value, which means that they are

sensitive to sentence changes that keep the same seman-

tics. On the other hand, CIDEr and METEOR also assign

lower values to the incorrect caption that changes the se-

mantic meaning, which indicates that they are better able

to discriminate between semantic changes in the sentence.

Hence, in this paper, we mainly consider CIDEr as the base-

line metric to evaluate both the diversity and accuracy.

3. Measuring Diversity of Image Captions

Currently, the widely used metrics, such as BLEU,

CIDEr, and SPICE are for a single caption prediction. To

evaluate a set of captions C = {c1, c2, · · · , cm}, two dimen-

sions are required: accuracy and diversity. For accuracy,

the standard approach is to average the similarity scores,
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acc = 1

m

∑
i si, where si = sim(ci, CGT ) is the similarity

measure (e.g., CIDEr) between caption ci and ground-truth

caption set CGT . For diversity, we will consider the pairwise

similarity between captions in C, which is able to reflect the

underlying structure of the set of captions.

3.1. Latent Semantic Analysis

Latent semantic analysis (LSA) [6] is a linear represen-

tation model, which is widely applied in information re-

trieval. LSA considers the co-occurrence information of

words (or n-grams), and uses singular value decomposition

(SVD) to obtain a low-dimensional representations of the

documents in terms of topic vectors. Applying LSA to a

caption set, more topics indicates a more diverse set of cap-

tions, whereas only one topic indicates a non-diverse set. To

use LSA, we first represent each caption via a vector. In this

subsection, we consider the simplest representation, bag-of-

words (BoW), and kernelize it in the next subsection using

CIDEr.

Given a set of captions C = {c1, · · · , cm} that describe

an image, and a dictionary D = {w1, w2, · · · , wd}, we use

the word-frequency vector to represent each caption ci, fi =
[f i

1
, · · · , f i

d]
T , where f i

j denotes the frequency of word wj

occurring in caption ci. The caption set C can be represented

by a “word-caption” matrix, M = [f1 · · · fm].
Applying SVD, we decompose M into three matrices,

i.e., M = USV
T , where U is composed of the eigenvec-

tors of MM
T and S = diag(σ1, · · · , σm) is a diagonal ma-

trix consisting of singular values σ1 > σ2 > · · · > 0 , and

V is composed of the eigenvectors of MT
M. Each column

of U represents the words in a topic vector of the caption

set, while the singular values in S represent the strength

(frequency) of the topics. If all captions in C are the same,

then only one singular value is non-zero, i.e., σ1 > 0 and

σi = 0, ∀i > 1, If all the captions are different, then all

the singular values are the same, i.e., σ1 = σi, ∀i. Hence,

the ratio r = σ1∑
m

i=1
σi

represents how diverse the captions

are, with larger r meaning less diverse (i.e., the same cap-

tion), and smaller r indicating more diversity (all differ-

ent captions). The ratio r is within [ 1
m
, 1]. Thus we map

the ratio to a value in [0, 1], to obtain our diversity score

div = − logm(r), where larger div means higher diversity.

Looking at the matrix K = M
T
M, each element kij =

f
T
i fj is the dot-product similarity between the BoW vectors

fi and fj . As the dimension of fi may be large, a more

efficient approach to computing the singular values is to use

the eigenvalue decomposition K = VΛV
T , where Λ =

diag(λ1, · · · , λm) are the eigenvalues of K, which are the

squares of the singular values, σi =
√
λi. Note that K is a

kernel matrix, and here LSA is using the linear kernel.

3.2. Kernelized Method via CIDEr

In Section 3.1, a caption is represented by BoW features

fi. However, this only considers word frequency and ig-

nores phrases and sentence structures. To address this prob-

lem, we use n-gram or p-spectrum kernels [25] with LSA.

The mapping function from the caption space C to the fea-

ture space F associated with the n-gram kernel is

φn(c) = [fn
1
(c) · · · fn

|Dn|(c)]
T , (1)

where fn
i (c) is the frequency of the i-th n-gram in caption

c, and Dn is the n-gram dictionary.

CIDEr first projects the caption c ∈ C into a weighted

feature space F, Φn(c) = [ωn
i f

n
i (c)]i where the weight ωn

i

for the i-th n-gram is its inverse document frequency (IDF).

The CIDEr score is the average of the cosine similarities for

each n,

CIDEr(ci, cj) =
1

4

4∑

n=1

CIDErn(ci, cj), (2)

where

CIDErn(ci, cj) =
Φn(ci)

TΦn(cj)

||Φn(ci)|| ||Φn(cj)||
. (3)

In (3), CIDErn is written as the cosine similarity kernel

and the corresponding feature space is spanned by Φn(c).
Since CIDEr is the average of CIDErn for different n,

therefore, it is also a kernel function that accounts for uni-,

bi-, tri- and quad-grams.

Since CIDEr can be interpreted as a kernel function, we

reconsider the kernel matrix K in LSA, by using kij =
CIDEr(ci, cj). The diversity according to CIDEr can then

be computed by finding the eigenvalues of the kernel matrix

{λ1, · · · , λm}, computing the ratio r =
√
λ1∑

m

i=1

√
λi

, and ap-

plying the mapping function, div = − logm(r). Here, we

are computing the diversity by using LSA to find the cap-

tion topics in the weighted n-gram feature space, rather than

the original BoW space. Other caption similarity measures

could also be used in our framework to compute diversity if

they can be written as positive definite kernel functions.

4. Experiment Setup

We next present our experiment setup re-evaluating cur-

rent captioning methods using both diversity and accuracy.

4.1. Generating Diverse Captions

As most current models are trained to generate a single

caption, we first must adapt them to generate a set of diverse

captions. In this paper we propose 4 approaches to gener-

ate diverse captions from a baseline model. (1) Random

sampling (RS): After training, a set of captions is gener-

ated by randomly sampling word-by-word from the learned

conditional distribution p̂(c|I). (2) Randomly cropped im-

ages (RCI): The image is resized to 256 × 256, and then

randomly cropped to 224 × 224 as input to generate the

caption. (3) Gaussian noise corruption (GNC): Gaussian

noise with different standard deviations is added to the input
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image when predicting the caption. (4) Synonym switch

(SS): The above 3 approached manipulate images to gener-

ate diverse captions, whereas the synonym switch approach

directly manipulates a generated caption. First, a word2vec

[21] model is trained on MSCOCO. Next, given a caption,

the top-10 synonyms for each word are retrieved and given a

weight based on the similarities of their word2vec represen-

tation. Finally, with probability p, each word is randomly

switched with one of its 10 synonyms, where the synonyms

are sampled according to their weights.

For the models that are able to generate diverse cap-

tions, such as CVAE and CGAN, different random vectors

(DRV) are drawn from Gaussian distributions with different

standard deviations to generate the captions.

4.2. Implementation Details

In this paper, we evaluate the following captioning mod-

els: (1) NIC [29] with VGG16 [27]; (2) SoftAtt [34] with

VGG16; (3) AdapAtt [19] with VGG16; (4) Att2in [23]

with cross-entropy (XE) and CIDEr reward, denoted as

Att2in(XE) and Att2in(C); (5) FC [23] with cross-entropy

and CIDEr reward, denoted as FC(XE) and FC(C); (6)

Att2in and FC with retrieval reward2 [20], denoted as

Att2in(D5) and FC(D5), where the retrieval reward weight

is 5 (the CIDEr reward weight is 1), and likewise for D10;

(7) CVAE and GMMCVAE3 [30], (8) CGAN [5].

Models (1)-(7) generate single caption for one image,

and model (7) and (8) are able to generate diverse cap-

tions. The models are trained using Karpathy’s training

split of MSCOCO. We use each of the models to gener-

ate 10 captions for each image in the Karpathy’s test split,

which contains 5,000 images. The standard deviations of

Gaussian noise for GNC and DRV are {1.0, 2.0, · · · , 10.0}.

For SS, we first generate a caption using beam search

with beam-width 3, and then generate the other 9 cap-

tions by switching words with synonyms with probability

p ∈ {0.1, 0.15, · · · , 0.5}. Models and diversity generators

are denoted as “model-generator”, e.g., “NIC-RS”.

The accuracy acc of the generated captions C is the

average CIDEr: 1

m

∑m

i=1
CIDEr(ci, CGT ), where ci ∈

C and CGT is the set of human annotations. We also

compute the leave-one-out accuracy of human annotations:
1

N

∑N

i=1
CIDEr(gi, CGT\i), where gi ∈ CGT and CGT\i

is the set of human annotations without the i-th annotation.

The diversity of C is computed using the LSA-based method

(denoted as LSA) and the kernel CIDEr method (denoted as

Self-CIDEr), introduced in Sections 3.1 and 3.2.

5. Experiment Results

We next present our experiment results evaluating meth-

ods based on both diversity and accuracy.

2https://github.com/ruotianluo/DiscCaptioning
3https://github.com/yiyang92/vae captioning

Figure 2: The vocabulary sizes and diversity scores (Self-CIDEr)

of different caption models. The vocabulary of each trained model

is collected from 50,000 captions (10 captions for each image),

while the human annotations have 25,000 captions (5 captions for

each image). For GNC, RCI, CVAE, GMMCVAE and CGAN,

greedy search is used to generate captions.

Figure 3: Word frequency plots for the top 5,000 most-frequent

words for each captioning model.

5.1. Analysis of Caption Vocabulary

We first focus on the vocabulary of the generated cap-

tions from each model, including vocabulary size and word

frequency. Generally, a large vocabulary size and long tail

in the word frequency distribution indicates higher diversity.

Figure 2 shows the vocabulary sizes of different models

(here we only show the most representative models), as well

as the models diversity score (Self-CIDEr). Human anno-

tations have the largest vocabulary, even though there are

fewer human captions than model captions (25,000 for hu-

mans, and 50,000 for each model). For NIC and AdapAtt

models, using RS results in larger vocabulary which also

generates more diverse captions. Although AdapAtt is more

advanced than NIC, the vocabulary size of AdapAtt-RS is

smaller than that of NIC-RS. One possible reason is that

models developed to obtain better accuracy metrics often

learn to use more common words. Looking at reinforcement

learning (e.g., Att2in(XE) vs. Att2in(C) vs. Att2in(D)),
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Corr Coef Self-CIDEr LSA mBLEU-mix

overall Pearson ρ 0.616 0.601 0.585

overall Spearman ρ 0.617 0.602 0.575

avg. per image Spearman ρ 0.674 0.678 0.644

Table 2: Correlation between computed diversity metric and hu-

man diversity judgement: (top) overall correlation; (bottom) cor-

relation of per-image rankings of methods.

using CIDEr reward to fine-tune the model will drastically

decrease the vocabulary size so as to improve the accuracy

metric (CIDEr) [23]. Interestingly, using a retrieval reward

gives a larger vocabulary size compared to using the CIDEr

reward. Improving retrieval reward encourages semantic

similarity, while improving CIDEr reward encourages syn-

tactic similarity, which leads to low diversity. Comparing

the CGAN/CVAE methods, CVAE has a smaller vocabu-

lary compared to CGAN and GMMCVAE, which indicates

that the latter could generate more diverse captions. Note

that the vocabulary sizes only roughly reflects the diversity

– a small vocabulary could lead to diverse captions via us-

ing different combinations of words, Hence, it is important

to look at the pairwise similarity between captions.

Figure 3 shows the frequency plots of each word used

by the models. If a model employs diverse words, the plots

in Figure 3 should have a long tail. However, most of the

models have learned to use around 2,000 common words.

In contrast, CGAN and GMMCVAE encourage a longer-

tail distribution, and in particular the word frequency plot

of CGAN is similar to the human annotations. RS tends to

give the most words, but also fails to generate fluent sen-

tences. Therefore, we suggest that both accuracy and diver-

sity should be considered to evaluate a model. Interestingly,

there is a very large gap between using cross-entropy and

CIDEr rewards for reinforcement learning, which is bridged

by the retrieval reward. In Section 5.3, we will show that

balancing cross-entropy, CIDEr, and retrieval rewards can

also provide good results in terms of diversity and accuracy.

5.2. Considering Diversity and Accuracy

Here we re-evaluate the models accounting for both di-

versity and accuracy. Figure 4 shows the diversity-accuracy

(DA) plots for LSA-based diversity and CIDEr kernel-

ized diversity (Self-CIDEr). The trends of LSA and Self-

CIDEr are similar, although LSA yields overall lower val-

ues. Hence, we mainly discuss the results of Self-CIDEr.

After considering both diversity and accuracy, we may

need to rethink what should be considered a good model.

We suggest that a good model should be close to human

performance in the DA space. Looking at the performance

of humans, the diversity is much higher than Att2in(C),

which is considered a state-of-the-art captioning model. On

the other hand, the diversity using randomly sampling (RS)

are closer to human annotations. However, the accuracy is

poor, which indicates that the descriptions are not fluent or

are off-topic. Therefore, a good model should well balance

between diversity and accuracy. From this point of view,

CGAN and GMMCVAE are among the best models, as they

are closer to the human annotations in the DA space. Exam-

ple caption results and their diversity/accuracy metrics can

be found in the supplemental.

Most of the current state-of-the-art models are located

in the bottom-right of the DA space, (high CIDEr score but

poor diversity), as they aim to improve the accuracy. For ex-

ample, directly improving CIDEr reward via RL is a popular

approach to obtain higher CIDEr scores [17, 18, 20, 23], but

it encourages using common words and phrases (also see

Figure 2), which lowers the diversity. Using retrieval reward

is able to improve diversity comparatively, e.g., Att2in(D5)

vs Att2in(C), because it encourages distinctive words and

semantic similarity, and suppresses common syntaxes that

do not benefit retrieval. The drawback of using retrieval

model is that the fluency of the captions could be poor

[20], and using a very large weight for the retrieval re-

ward will cause the model to repeat the distinctive words.

Finally, note that there is a large gap between using the

cross-entropy loss and the CIDEr reward for training, e.g.,

Att2in(XE) and Att2in(C). In the next subsection, we will

consider building models to fill the performance gap by bal-

ancing between the losses.

Comparing the diversity generators, SS and GNC are

more promising for generating diverse captions. Captions

generated using RCI have higher accuracy, while those us-

ing RS have higher diversity. Interestingly, in the top-left

of the DA plot, using RS, a more advanced model can gen-

erate more accurate captions without reducing the diversity,

This shows that an advanced model is able to learn a better

p̂(c|I), which is more similar to the ground-truth distribu-

tion p(c|I). However, there is a long way to go to reach the

accuracy of human annotations.

Correlation to human evaluation. We conduct human

evaluation on Amazon Machine Turk (AMT). We use 100

images, and for each image we show the worker 9 sets of

captions, which are generated in different ways: human

annotations and 8 models, AdapAtt-SS, AdapAtt-GNC,

AdapAtt-RCI, Att2in(XE)-RS, Att2in(C)-RS, Att2in(D5)-

RS, Att2in(D10)-RS and CGAN-DRV. We require the

workers to read all the sets of captions and then give scores

(from 0 to 1) that reflects the diversity4 of the set of cap-

tions. Each image is evaluated by 3 workers, and the diver-

sity score for each image/model combination is the average

score given by the 3 workers.

Fig. 5 (left, center) shows the correlation plots between

our proposed metrics and human evaluation. The overall

consistency between the proposed diversity metric and the

human judgement is quantified using Pearson’s (paramet-

4In our instructions, diversity refers to different words, phrases, sen-

tence structures, semantics or other factors that impact diversity.
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Figure 4: The performance of different models considering accuracy and diversity. Left: using LSA-based diversity, which employs BoW

features. Right: using CIDEr kernelized diversity (Self-CIDEr). The marker shape indicates the caption model, while the marker color

indicates the diversity generator or training method.
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Figure 5: The correlation plots between the diversity scores computed by different metrics and human evaluation. The red lines are the

best fit lines to the data.

ric) and Spearman’s rank (non-parametric) correlation coef-

ficients (see Table 2 top). Since the human annotator evalu-

ated the diversity scores for all methods on each image, they

were implicitly ranking the diversity of the methods. Hence,

we also look at the consistency between the human rankings

for an image and the rankings produced by the proposed

metrics, as measured by the average per-image Spearman

rank correlation (see Table 2 bottom). Both Self-CIDEr and

LSA-based metrics are largely consistent with human eval-

uation of diveresity, with Self-CIDEr having higher overall

correlation, while both have similar per-image ranking of

methods.

We compare our metrics with mBLEUmix =
1 − 1

4

∑
4

n=1
mBLEUn, which accounts for mBLEU-

{1,2,3,4}, and we invert the score so that it is consistent

with our diversity metrics (higher values indicate more di-

versity). The correlation plot between mBLEU-mix and hu-

man judgement is shown in Fig. 5 (right). mBLEU-mix has

lower correlation coefficient with human judgement, com-

pared to LSA and Self-CIDEr (see Table 2). Similar re-

sults are obtained when looking at the mBLEU-n scores.

Self-CIDEr has better overall correlation with human judge-

ment, while the two methods are comparable in terms of

per-image consistency of method ranking.

In addition the correlation plot shows the mBLEU scale

is not uniformly varying, with more points falling at the

lower and higher ends of the scale and less points in the

middle. In contrast, LSA and Self-CIDEr have more uni-

form scales.

5.3. Rethinking Reinforcement Learning

In this subsection we further investigate RL for image

captioning, and how to bridge the gap between the perfor-
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Figure 6: The diversity and accuracy performance of Att2in (left) and FC (right) with different loss functions. XE, CIDEr, and

Retrieval denote the cross-entropy loss, CIDEr reward [23] and retrieval reward [20]. The weights are λ ∈ {0, 1, 2, 3, 5, 10, 20},

β ∈ {0, 1, 2, 3, 5, 10, 15}, α ∈ {0, 5, 10, 20, 30, 40, 50}, γ ∈ {0, 10, 20, 30, 40, 50} and ζ ∈ {0, 5, 10, 20, 30, 40, 50}. The inset

plot in the bottom-left is a zoom-in of rectangle in the main plot.

XE-only λ = 5 λ = 10 λ = 20 CIDEr-only

Figure 7: MDS visualization of the similarity between captions of 10 images. 10 captions are randomly sampled from Att2in for each

image. Markers and colors indicate different images. Larger markers indicates multiple captions located at the same position.

mance using cross-entropy and using CIDEr reward. In par-

ticular, we train Att2in and FC using different loss functions

that combine the cross-entropy, CIDEr reward, and retrieval

reward, with varying weights.

The results are shown in Figure 6. Balancing the XE loss

and CIDEr reward is the most effective way to bridge the

gap. Using larger weight λ results in higher accuracy but

lower diversity. Based on our experiments, using λ = 5
well balances diversity and accuracy, resulting in perfor-

mance that is closer to the human annotations, and sim-

ilar to CGAN and GMMCVAE. Using XE loss only, the

learned distribution p̂(c|I) has a large variance, which could

be very flat and smooth, and thus incorrect words appear

during sampling. In contrast, using CIDEr reward can sup-

press the probability of the words that cannot benefit CIDEr

score, and encourage the words that improve CIDEr. Hence,

combining the two losses suppresses the poor words and

promotes good words (CIDEr), while also preventing the

distribution from concentrating to a single point (XE). Fig-

ure 7 visualizes the similarity between captions using multi-

dimensional scaling (MDS) [3], for different values of λ.

As λ increases, some captions are repeated, and points are

merged in the MDS visualization.

Finally, using the retrieval reward in the combined loss

function also slightly improves the diversity and accuracy,

and generally results in a local move in the DA plot. How-

ever, a very large γ or ζ could result in a repetition problem,

i.e., a model will repeat the distinctive words, since distinc-

tive words are more crucial for the retrieval reward.

6. Conclusion

In this paper, we have developed a new metric for eval-

uating the diversity of a caption set generated for an im-

age. Our diversity measure is based on computing singular

values (or eigenvalues) of the kernel matrix composed of

CIDEr values between all pairs of captions, which is inter-

pretable as performing LSA on the weighted n-gram feature

representation to extract the topic-structure of the captions.

Using our diversity metric and CIDEr to re-evaluate recent

captioning models, we found that: 1) models that have op-

timized accuracy tend to have very low diversity, and there

is a large gap between model and human performances; 2)

balancing the XE loss and other reward functions when us-

ing RL is a promising way to generate diverse and accurate

captions, which can achieve performance that is on par with

generative models (CGAN and GMMCVAE).
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