
Fusing Crowd Density Maps and Visual Object Trackers for People Tracking in

Crowd Scenes

Weihong Ren1,2,3, Di Kang1, Yandong Tang2, Antoni B. Chan1

1Department of Computer Science, City University of Hong Kong;
2State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences;

3University of Chinese Academy of Sciences

{weihonren2-c, dkang5-c}@my.cityu.edu.hk, ytang@sia.cn, abchan@cityu.edu.hk

Abstract

While visual tracking has been greatly improved over the

recent years, crowd scenes remain particularly challenging

for people tracking due to heavy occlusions, high crowd

density, and significant appearance variation. To address

these challenges, we first design a Sparse Kernelized Cor-

relation Filter (S-KCF) to suppress target response varia-

tions caused by occlusions and illumination changes, and

spurious responses due to similar distractor objects. We

then propose a people tracking framework that fuses the S-

KCF response map with an estimated crowd density map

using a convolutional neural network (CNN), yielding a re-

fined response map. To train the fusion CNN, we propose

a two-stage strategy to gradually optimize the parameter-

s. The first stage is to train a preliminary model in batch

mode with image patches selected around the targets, and

the second stage is to fine-tune the preliminary model us-

ing the real frame-by-frame tracking process. Our density

fusion framework can significantly improves people track-

ing in crowd scenes, and can also be combined with other

trackers to improve the tracking performance. We validate

our framework on two crowd video datasets.

1. Introduction

In recent years, visual object tracking methods [1, 7, 12,

14, 17, 20] have focused on developing an effective ap-

pearance model in sparsely crowd scenes. Few works can

effectively track people in crowded scenes due to heavy

occlusions, high crowd density, and appearance variation-

s. Though people tracking in crowded scenes is challeng-

ing, it is necessary for a wide range of applications includ-

ing surveillance, event detection and group behaviour mod-

elling. Rather than focus on individual people, crowd count-

ing methods aim to predict the number of people in an im-

age without explicitly detecting or tracking the people. One

effective method is to estimate a crowd density map [18],

where the sum over a region in the image corresponds to

the number of people in that region. The crowd density

map has been used for people counting [28, 30, 32], as well

as for small object detection [21, 25, 28]. In this paper, we

propose a framework that can effectively combine crowd

density maps with generic visual object trackers to address

the problem of people tracking in crowd scenes.

KCF LCT S-KCF

Image patch Density map Our Fused map

Density-awareOurs

Ground truth

KCF response LCT response S-KCF response

Figure 1. An example of people tracking in crowd scene using d-

ifferent trackers: KCF [14], S-KCF (ours), long-term correlation

tracker (LCT) [20], density-aware [25], and our proposed fusion

tracker. The response maps of the raw trackers (bottom-right) are

greatly affected by the objects surrounding the target due to their

similar appearances. Compared to KCF and LCT, our S-KCF par-

tially suppresses the spurious responses using a sparsity constraint.

Our density fusion framework combines the S-KCF response map

with the crowd density map, and effectively suppresses the irrele-

vant responses and detects the target accurately (top-right).

Fig. 1 presents an example for people tracking using dif-

ferent trackers: KCF [14], S-KCF (ours), long-term corre-

lation tracker (LCT) [20], density-aware [25], and our pro-

posed fusion tracker. KCF and LCT are designed to address

the problem of target appearance variation, but they do not

perform well in crowd scenes due to the presence of many

objects with similar appearance as the target, which results

in drift. In addition, the target in crowd scenes is usually

heavily occluded by other objects, and it is difficult to dif-

ferentiate appearances between the target and other objects.

Although originally developed for counting, crowd den-

5353

sity maps contain information about the location of people

in the image, which makes them useful for people detection

and tracking. Previous work [25] uses crowd density maps

to improve people detection and tracking in crowd scenes.

[25] first detects the head locations of all the people in a

video through the optimization of a joint energy function

that encourages the detected locations in the score maps to

be consistent with the estimated density map. For track-

ing, [25] uses a nearest-neighbor rule to associate the head

detections in individual frames into people tracks. Howev-

er, one disadvantage of [25] is its simple association rule,

which does not use an appearance model, and thus could

fail in crowd scenes when people walk closely together.

In this paper, we address the problem of people tracking

in crowded scenes by combining the visual tracker response

map with the crowd density map to produce a new fused

response map. The contributions of this paper are 3-fold:

1. To make the appearance-based tracker robust in crowd-

ed scenes, we propose a sparse KCF (S-KCF) tracker

that uses a sparsity constraint on tracker response map

to suppress variations caused by occlusions and illumi-

nation changes, and distractor objects.

2. We propose a density fusion framework, based on a C-

NN, that combines the S-KCF tracker response and the

estimated crowd density map to improve people track-

ing in crowd scenes. Our density fusion framework

can also be used with other appearance-based trackers

to improve their accuracy in crowded scenes.

3. To train the fusion CNN, we propose a two-stage train-

ing strategy to gradually optimize the parameters in an

end-to-end fashion. The first stage trains a preliminary

model based on image patches selected around the tar-

gets, and the second stage fine-tunes the preliminary

model on real tracking cases.

2. Related work

Here, we give a brief review of tracking methods close-

ly related to our work. Comprehensive reviews on visual

tracking methods can be found in [19, 26].

2.1. Correlation Filters Based Trackers

Correlation filters (CF) have been widely used in on-

line visual tracking due to its high computational efficien-

cy. [3] presented a Minimum Output Sum of Squared Er-

ror (MOSSE) filter for visual tracking on gray images. To

make MOSSE a fast tracker, correlation is computed in

an element-wise multiplication in Fast Fourier Transform

(FFT), and the computational efficiency for MOSSE can

reach several hundreds fps. [13] exploited the circulant

structure of matrices for tracking-by-detection with kernel-

s (CSK), which was later derived as the Kernelized Cor-

relation Filter (KCF) tracker that supports multi-channel

features [14]. To incorporate color information into CSK

tracker, [9] proposed a low-dimensional adaptive extension

for color distributions, and extended the learning scheme

to multi-channel color features. [17] proposed a method

to limit circular boundary effects of shifted examples, and

used all possible patches densely extracted from training ex-

amples during the learning process. By embedding spatio-

temporal context information into filter learning, [31] pro-

posed a model to handle appearance changes of target. [20]

proposed a Long-term Correlation Tracker (LCT) to address

the problem of long-term visual tracking. The LCT track-

er decomposes the tracking task into translation and scale

estimation of target objects in conjunction with a online

re-detection scheme, in order to address target drift during

long-term tracking when the scene is not too crowded. [8]

proposed a continuous convolution framework to integrate

multi-resolution feature maps into correlation filter.

To make the CF response map more robust under ap-

pearance changes, [27] exploited the anisotropy of the CF

response by using three sparsity-related loss functions: l1,

l1l2, and l2,1 norm functions. Their motivation is to toler-

ate large errors in the response map caused by appearance

changes, but the prediction of the target location may be

confused by the multi-peak response map. In contrast, our

proposed S-KCF model uses a sparsity constraint on the re-

sponse map, in order to suppress the irrelevant responses

caused by other objects or occlusions, making it more ro-

bust in crowded scenes.

2.2. Crowd Density Maps

Crowd density maps were proposed in [18] to solve the

object counting task. The crowd density at each pixel is pre-

dicted from the low-level image features, and the predicted

region count is the sum of the density map over that region.

Density map estimation is usually regarded as a general re-

gression problem, and previous methods mainly focus on

feature extraction and loss function design [11, 15, 18] to

make the estimation robust to scene changes. Recently, C-

NNs have also been used [28, 30, 32], and have achieved

good performance for a wide range of scenes. Besides peo-

ple counting [28, 30, 32], crowd density maps can also be

used for object detection [21, 25, 28].

2.3. Detection and Tracking in Crowd Scenes

To detect small instances in a scene, [21] first estimat-

ed the object density maps, and then proposed a joint ob-

ject detection and counting framework using the density

maps based on 2D integer programming. [22] proposed

an alternative formulation of multi-target tracking as min-

imization of a continuous energy function. Besides the im-

age evidence, their model also takes into account physical

constraints, and thus it performs well for general crowd-

ed scenes. [24] adopted the Correlated Topic Model (CT-

M) [2] to track individual targets in high-density unstruc-

5354

tured crowd scenes. In [25], a “density-aware” detection

and tracking model was proposed that combines individu-

al person detection with crowd density maps. [25] solves

an energy minimization problem where the candidate de-

tections should have high scores in the detection score map,

while also encouraging the density map produced from the

candidate detections to be similar to an estimated crowd

density map. However, their tracking framework does not

contain appearance models for each target, and uses simple

nearest-neighbors correspondence between frames. In con-

trast to [25], our method fuses the crowd density map and

response map of the visual tracker into a refined response

map, and the target can be localized without solving an en-

ergy minimization problem. In our work, targets are asso-

ciated between frames using the appearance model of the

visual tracker.

3. Methodology

Our density fusion framework has three main parts: visu-

al tracking model (S-KCF), crowd density estimation, and

fusion neural network. Our framework is shown in Fig. 2.

An image patch in the current frame is first cropped based

on the predicted location of previous frame, and then passed

to S-KCF to generate a response map. At the same time, a

crowd density map of the image patch is estimated using a

CNN. The response map, image patch and the correspond-

ing density map are fused together using a fusion CNN,

yielding a final fused response map. The predicted target

location is the maximum value in the final response map.

Using the predicted location, the S-KCF filters are updated.

3.1. Sparse Kernelized Correlation Filter

Kernelized Correlation Filter (KCF) has achieved great

success in real-time tracking [13, 14]. By exploiting the cir-

culant structure, [13] formulated visual tracking as a corre-

lation filtering problem. Cyclic shifts of the target region

in the initial frame are first used to train a KCF model.

The KCF model is used to predict a response map on the

next frame, and the location with the highest response val-

ue is the new target position. As tracking proceeds, the

KCF model is gradually updated to adapt to background

changes. However, for crowd scenes, the traditional KCF

model may lose track easily due to many similar distractor

objects, heavy occlusions and illumination changes, which

all cause irrelevant responses around the target.

To make the KCF model robust to background changes,

we propose to use an l0 sparse term to regularize the re-

sponse map, thus suppressing high responses due to dis-

tractors, occlusions and illumination changes. The typical

correlation filter is a ridge regression problem

min
w

∑

i

(f (xi)− yi)
2
+ λ‖w‖2

2
, (1)

where regression function f (xi) = wTφ (xi) is trained

with a feature-space projector φ (·), {yi} is the Gaussian-

shaped response map, and λ > 0 is a parameter that controls

overfitting. The Gaussian-shaped target response map is s-

parse, but the tracker usually generates multi-peak response

maps due to distractors having similar appearance in crowd

scenes. Hence, we add a sparsity regularization term on the

response map in order to suppress the irrelevant response

and retain the target response,

min
w

‖ΦT w − y‖2
2
+ λ‖w‖2

2
+ τ‖ΦT w‖0, (2)

where Φ = [φ (x1) , · · · , φ (xi)], y = [y1, · · · , yi]
T

; τ > 0
is a parameter that controls the sparsity of response map.

During training, the sparse constraints make the tracker fil-

ters w consider the context changes, and push the weaker

positive responses of the distractors to zero. Thus, the fil-

ters trained with the sparse constraint can generate sparse

response maps on the test set.

Eq. 2 is an NP-hard problem, since it has a l0 term. To

make (2) tractable, we add an auxiliary quadratic constraint

[29], and rewrite (2) as:

min
w,r

‖ΦT w− y‖2
2
+λ‖w‖2

2
+ τ‖r‖0+β‖ΦT w− r‖2

2
, (3)

where β is a parameter controlling the similarity between r

and ΦT w. When β is large enough, r approximately equals

to ΦT w. The solution to (3) can be found by alternatively

solving for w and r (see supplementary for derivations),

min
w

‖ΦT w − y‖2
2
+ λ‖w‖2

2
+ β‖ΦT w − r‖2

2
, (4)

min
r

τ‖r‖0 + β‖ΦT w − r‖2
2
. (5)

For kernel (nonlinear) regression, w =
∑

i αiφ(xi), and

thus variables under optimization are α. Referring to [14,

23], α can be obtained by a closed-form solution

α̂ =
ŷ + βr̂

(β + 1) k̂ + λ
, (6)

where k is the first row of the kernel matrix K whose ele-

ments kij = φ (xi)
T
φ (xj), the hatˆdenotes the DFT of a

vector, and the fraction means element-wise division. The

optimal solution r in (5) is obtained from

r = σ

(

τ

2β
,F−1

(

α̂⊙ k̂
)

)

, (7)

where σ(·) is a soft-thresholding function,

σ (ε, x) = sign(x)max(0, |x| − ε). (8)

After we obtain α̂, the response map for a candidate region

z can be computed in frequency domain from

f̂ (z) = k̂
xz
⊙ α̂, (9)

5355

S-KCF filters

of frame T-1

Crop

Target detection F i

Current frame T
Response mapImage patch

Visual tracker

Output

Fusion neural network

Location of

Location of

frame TDensity map

Fusion

CNN

Target detection

S-KCF filters

of frame T

Fusion map

Update

Location of

frame T-1
The CNN for

density estimation

Input
Crowd density estimation

Figure 2. The proposed density fusion framework. The input of the framework is the current frame T, S-KCF filters in frame T-1 and target

location of frame T-1. The output is target location of frame T and the updated S-KCF filters. An image patch in current frame is first

cropped based on previous target location, and then is input into S-KCF to generate a response map. At the same time, a crowd density map

is estimated from the image patch. The fusion CNN takes in the image patch, S-KCF response map, and crowd density map and produces

a refined fused response map, whose maximum value indicates the location of the target. The S-KCF filters are then updated based on the

predicted target location.

where x is the latest target region and kxz is the first row of

the kernel matrix Kxz whose element kxz
ij = φ (xi)

T
φ (zj).

In our experiments, we use 5 iterations of the alternating

solver. The overall complexity of the sparse KCF mod-

el is O (n log n) [14, 27], and thus remains as efficient as

standard KCF. Here, n is the number of pixels in the im-

age patch. For UCSD (158x238), the actual running times

for KCF, S-KCF, LCT and DSST are 178.2 fps, 112.6 fps,

43.57 fps and 137.67 fps, respectively.

Fig. 3 shows an example comparing the response map-

s of KCF and S-KCF. The candidate region is presented in

Fig. 3(a), where the target object is the person in the middle.

The response maps for KCF and S-KCF trackers appear in

Figs. 3(b) and 3(c), respectively. The KCF response gen-

erates a bias caused by other objects, and thus the detected

location drifts to another object. In contrast, the response

map of our S-KCF has a clear peak in the response map,

which makes it less likely to drift.

(a) (b) (c)

Candidate region KCF S-KCF

Figure 3. Correlation filter response using KCF and our S-KCF: (a)

the candidate region and the detection results; the response maps

for (b) KCF, and (c) our S-KCF. The response map for our S-KCF

has a clearer peak, which prevents drifting in crowded scenes.

3.2. Crowd Density Map Estimation

The CNN structure for crowd density map estimation is

shown in Fig. 4, and loosely follows [30], except that we

estimate a high-resolution density map for tracking by us-

ing a sliding window CNN to predict the density for each

pixel in the tracking image patch. The input for the net-

work is 33×33 image patch, and the output is the densi-

ty value at the center pixel of the input patch. The net-

work has 2 convolutional layers and 5 fully-connected lay-

ers. The first convolutional layer contains 64 5×5×1 filter-

s, followed by a 2×2 max-pooling layer with 2×2 stride.

The second convolutional layer has 64 5×5×64 filters and

is followed by a 3×3 max-pooling layer with stride 2×2.

The parameters of fully connected layers are shown in

Fig. 4, and the rectified linear unit (ReLU) activation func-

tion, which is not shown in the figure, is applied after each

convolutional/fully-connected layer.

For training, the ground truth density map is created by

convolving the annotation map with Gaussian kernels

D (p) =
∑

µi∈P

N
(

p;µi, σ
2I
)

, (10)

where p denotes a pixel location, P is the set of annotated

positions for an image, and N
(

p;µi, σ
2I
)

is a Gaussian

response with mean µi and isotropic variance σ2I .

Similar to [30], we train the CNN using two tasks, den-

sity estimation and people counting. Both tasks share the

same CNN feature extraction layers. People counting is an

auxiliary task that helps guide the network to find good im-

age features. The loss function for density estimation is the

pixel-wise squared error,

ℓdensity =
1

N

N
∑

j=1

‖D̂j −Dj‖
2

2
, (11)

where D̂j is the estimated density value, and N is the in-

put batch size. For simplicity, we treat people counting as

a multi-class classification task where each class is the peo-

ple count within the image patch, and the categorical cross

entropy is used as the loss function

ℓcount = −
1

N

N
∑

j=1

K
∑

k=1

pjk log p̂jk, (12)

5356

where K is the number of classes (the count range), p·k
is the true probability of class k and p̂·k is the predicted

probability of class k. The two tasks can be combined into

a weighted loss function ℓ = γ ·ℓdensity+ℓcount, where we

set γ = 100 in our implementation.

64×5×5

17

Conv1

Conv2

fc1

fc2

fc3

128

50

81

15

1

fc1_cls

fc2_cls

Regression task:

density

Classification task:

number

33

64×5×5

33

ff

Figure 4. CNN for crowd density map estimation. The CNN con-

tains 2 convolutional and 5 fully connected layers. Two tasks are

used for training, density estimation and people counting. Peo-

ple counting is an auxiliary task to guide the network to find good

image features.

3.3. Fusion CNN

The fusion CNN combines the tracker response map, the

crowd density map, and the image patch to produce a re-

fined (fused) response map, where the maximum value in-

dicates the target position. Note that the image patch is

included as input, since it can provide context/localization

information (e.g., edges) that are not visible in the re-

sponse/density maps (see Fig. 7 for ablation studies). The

structure of our fusion CNN is shown in Fig. 5. The input

has 3 channels: image patch, crowd density map, and re-

sponse map. The size of the input is selected according to

the average target size in a video. Our fusion network has 3

convolutional layers (Conv1-Conv3). Conv1 has 64 9×9×3

filters, Conv2 has 32 1×1×64 filters, and the last Conv3 has

1 5×5×32 filters. The ReLU activation function is applied

after each convolutional layer. Note that no max-pooling

layer is used, since the goal is to produce a fused response

map with the same resolution as the input.

For training, the ground truth fused response map is gen-

erated based on the annotated point of the target position as

R (p) = N
(

p;µ, σ2I
)

, where p denotes a pixel location,

and µ is the target position. The loss function is the pixel-

wise squared error,

ℓ =
1

N

N
∑

j=1

‖R̂j −Rj‖
2

2
, (13)

where R̂j is the estimated response map, and N is the input

batch size.

3.4. Twostage Training Strategy for Fusion CNN

Training the fusion CNN requires the response maps

generated by KCF, but the KCF model is also updated ac-

Input patch

Density map

Response map

64×9×9 32×1×1

1×5×5

Conv1 Conv2

Conv3

Figure 5. The structure of the fusion CNN. The fusion network

has three input channels, and can effectively fuse the appearance

information (image patch), with the crowd density map, and the

visual tracker response map.

cording to the fusion response maps (see Fig. 2). Because

of the interplay between the output of one frame with the

input in the next frame, we adopt a two-stage training pro-

cedure to gradually optimize the fusion CNN. The first stage

trains a preliminary model based on image patches selected

around the targets, and the second stage fine-tunes the pre-

liminary model using the actual tracking process in Fig. 2.

In the first stage, we train the fusion CNN in “batch”

mode, where each frame is treated independently. I.e., the

predicted fused response map is not used to update the KCF

filters. To collect the training data, we first choose a time

point for a given target in the video clip, and then initial-

ize the S-KCF to track the target for 50 frames. For each

frame, we sample 8 windows randomly around the target’s

ground truth position. Using each window, we generate the

input patches (response map, crowd density map, and im-

age patch) and output (ground-truth response map). The

window shift is limited to the maximum target shift in the

dataset. For correlation filter trackers, the image patch size

is usually larger than the target in order to provide back-

ground context – we set the image patch size as 2.5 times

average target size. To augment more training samples, we

choose 5 starting points for each target in a video clip.

In the second stage, we run the fusion CNN, and use the

fusion response map to predict target position. The predict-

ed position is used to update S-KCF, and to generate a new

training sample for the next frame (input window & output

GT response). This is iterated over frames, and the samples

used for fine-tune training the fusion CNN.

4. Experiments

In this section, we evaluate our framework on the task of

people tracking in crowd scenes on the UCSD dataset [5]

and PETS2009 [22] datasets.

4.1. Dataset

For the UCSD dataset, we use the 1200 frames test set

for crowd counting [4], containing 152 unique people for

tracking. The frames are split into six video clips, based on

the crowd density (sparse, medium, high). All video clips

are grayscale with dimensions 238×158 at 10 fps.

5357

Table 1. Distance precisions on UCSD dataset for location error threshold 10 (P@10).
Scene Sparse density Medium density High density Average performance

❳
❳
❳

❳
❳

❳
❳
❳
❳
❳

Model

Tracker
KCF S-KCF LCT DSST DPM KCF S-KCF LCT DSST DPM KCF S-KCF LCT DSST DPM KCF S-KCF LCT DSST DPM

Raw 0.3073 0.3341 0.2979 0.2336 - 0.5907 0.5429 0.5602 0.5923 - 0.3604 0.4101 0.3188 0.3592 - 0.4235 0.4356 0.3932 0.4058 -

FusionCNN-v1 (ours) 0.4902 0.4895 0.4244 0.3109 - 0.6854 0.6723 0.5950 0.5644 - 0.4802 0.5535 0.3060 0.3708 - 0.5501 0.5772 0.4293 0.4202 -

FusionCNN-v2 (ours) 0.5546 0.4873 0.4939 0.3268 - 0.7138 0.7312 0.6633 0.6712 - 0.4890 0.5623 0.4293 0.5350 - 0.5786 0.5999 0.5217 0.5300 -

Density-aware [25] 0.2740 0.2487 - - 0.3203 0.2388 0.2294 - - 0.1357 0.1926 0.1386 - - 0.1410 0.2273 0.1948 - - 0.1821

UCSD PETS2009

Figure 6. Example frames from UCSD and PETS2009 and the cor-

responding crowd density maps. The datasets have low-resolution

images and various crowd densities.

In the PETS2009 dataset, we use the people tracking sub-

dataset S2 for evaluation. The subdataset S2 contains three

video clips: sparse density L1 (795 frames), medium densi-

ty L2 (436 frames) and high density L3 (240 frames). Since

our focus is on people tracking in crowd scenes, we only s-

elect the first 201 frames in L1 for evaluation. In total, there

are 877 frames with 44 unique people for tracking. The o-

riginal image resolution for PETS2009 is 576 × 768. We

reduce the image resolution to half and use the gray-scale

images to evaluate our proposed framework.

We randomly select 80% of the unique people for train-

ing the fusion CNN, and the remaining 20% are held out

for testing. To train the density map CNN on the UCS-

D dataset, we use 800 frames that are specified for train-

ing crowd counting methods, which are distinct from the

1200 frames used for evaluating tracking. For the PET-

S2009 dataset, the density map CNN is only trained on the

PETS2009 data, while the fusion CNN is fine-tuned from

the network learned from the UCSD dataset. We train three

separate models on L1, L2 and L3, since the 3 sequences

have different properties: L1 has occlusions, L2 has inter-

secting paths, and L3 has many distractors. Some example

frames from the two datasets and the corresponding esti-

mated crowd density maps are shown in Fig. 6.

4.2. Experiment setup

We compare our S-KCF with three other recent visual

trackers, KCF [14], LCT [20] and DSST [6], on the track-

ing datasets using HOG features (denoted as “Raw” model).

To show the general effectiveness of using density map fu-

sion, we train a separate fusion CNN for each tracker, using

the two-stage training procedure (denoted as “FusionCNN-

v2”), and evaluate the tracking performance of the fused

response map. To show the effectiveness of two-stage train-

ing, we compare with a fusion CNN using only the first

stage of training, denoted as “FusionCNN-v1”.

We also compare our CNN fusion method with the

density-aware method [25], which uses the crowd densi-

ty map to regularize the detections/tracks found in the de-

tection score map, produced using deformable parts model

(DPM) [10]. As the detection score maps do not contain

association information between frames, we also test [25]

using the response maps of the KCF and S-KCF tracker-

s in place of the detection score map, where the trackers

are updated after each frame using the predicted location.

Trackers are evaluated by distance-precision, which show

the percentage of frames whose estimated location is within

the given distance threshold of the ground truth.

The S-KCF paramaters are set to λ = 10−4, τ = 10−4,

and β = 0.05. The learning rate for S-KCF is 0.02. Cur-

rently, we update S-KCF in all frames regardless of occlu-

sion, and the update process is the same as KCF. For s-

cale estimation, we construct a patch pyramid around the

estimated target location, and the patch with maximum re-

sponse value is regarded as the current scale. We imple-

ment the fusion CNN using the Caffe [16] framework. The

standard stochastic gradient descent with momentum is em-

ployed for training, where the initial learning rate, momen-

tum and weight decay are set to 10−4, 0.9 and 10−3. The

network converges after approximately 300K for stage-1

training, and 50K iterations for stage-2 training, using mini-

batches of 64 samples.
4.3. Evaluation of People Tracking

Table 1 presents the precision for location error thresh-

old 10 (P@10) on the UCSD dataset. Overall, our S-KCF

performs better than KCF, LCT and DSST (average P@10

of 0.4356 vs 0.4235, 0.3932 and 4058), which demonstrates

that the sparsity constraint on response map suppresses the

spurious responses. When combined with crowd density us-

ing our density fusion framework (FusionCNN-v2), all the

trackers can be improved significantly (e.g., KCF improves

P@10 from 0.4235 to 0.5501, while S-KCF improves from

0.4356 to 0.5999). Comparing the training strategies, us-

ing the two-stage training (FusionCNN-v2) consistently im-

proves over using the first stage (FusionCNN-v1). The

density-aware method [25] for fusion does not perform as

well as our fusion method. Although most of the pedestri-

ans in an image can be detected, the density-aware method

has problems associating the same target together between

frames in crowd scenes. Here, performance of each track-

er is better on medium/crowded scenes due to more context

information (e.g, people in groups) than sparse scenes.

Tracking results P@10 on the PETS2009 dataset are

5358

Table 2. Distance precisions on PETS2009 dataset for location error threshold 10 (P@10).
Scene Sparse density Medium density High density Average performance

❳
❳
❳

❳
❳

❳
❳
❳
❳
❳

Model

Tracker
KCF S-KCF LCT DSST DPM KCF S-KCF LCT DSST DPM KCF S-KCF LCT DSST DPM KCF S-KCF LCT DSST DPM

Raw 0.3446 0.3705 0.3316 0.2565 - 0.1040 0.1345 0.1125 0.1481 - 0.4937 0.4810 0.3924 0.4709 - 0.2251 0.2447 0.2048 0.2378 -

FusionCNN-v1 (ours) 0.3782 0.3964 0.4404 0.4896 - 0.1293 0.1823 0.1256 0.1125 - 0.4848 0.4924 0.4241 0.5101 - 0.2432 0.2813 0.2335 0.2514 -

FusionCNN-v2 (ours) 0.5078 0.5466 0.4611 0.6995 - 0.1842 0.2188 0.1776 0.1631 - 0.5342 0.5354 0.4304 0.5570 - 0.3054 0.3326 0.2710 0.3196 -

Density-aware [25] 0.0415 0.0466 - - 0.1865 0.1115 0.0947 - - 0.0642 0.0304 0.0304 - - 0.0304 0.0840 0.0737 - - 0.0704

summarized in Table 2. S-KCF achieves better results, com-

pared to KCF, LCT and DSST (average P@10 of 0.2447 vs

0.2251, 2048 and 0.2378). All the trackers perform worse

on the medium density (L2) scene. The L2 scene has many

intersecting paths, which makes tracking more challenging.

In contrast, almost all the people in the heavy density (L3)

scene are moving in the same direction at the same speed,

which causes very few intersections. Similar to the UCSD

dataset, all the trackers improve step-by-step using our fu-

sion framework (e.g., DSST improves P@10 from 0.2378

to 0.2514 to 0.3196).

We also evaluate tracking performance using

Intersection-over-Union (IoU), and the average suc-

cess rates at IoU = 0.5 are summarized in Table 3. Overall,

all trackers are improved significantly, except for DSST

tracker on PETS2009. However, DSST tracker can be also

improved from 0.3468 to 0.3695 at IoU = 0.3.

Tracking results for KCF [14], LCT [20], DSST [6]

density-aware [25], S-KCF and our FusionCNN-v2 are

shown in Fig. 8 (see supplementary for video results). The

density-aware method [25] drifts easily to other objects, s-

ince there are no effective features to associate targets to-

gether between frames. The KCF, LCT and DSST trackers

fail to track the target when encountering heavy occlusions.

Combining S-KCF with crowd density, our FusionCNN-v2

works well for people tracking in crowd scenes, and pre-

vents drift during occlusions and intersecting paths. On

UCSD, the running times of fusion CNN with KCF, S-KCF,

LCT and DSST are 19, 18, 10, 23 fps.

To further compare S-KCF with KCF, we use a χ2 sig-

nificance test on the numbers of tracked and lost frames.

Raw S-KCF is significantly better than raw KCF on PETS

(p=0.03), but similar on UCSD (p=0.19). Fusion S-KCF is

better than Fusion KCF on both datasets (p=0.02, p=0.02).

Fusion is always better than Raw (p<10−4).

Table 3. The average success rates at IoU = 0.5.
Dataset UCSD PETS2009

❳
❳
❳

❳
❳

❳
❳

❳
❳
❳

Model

Tracker
KCF S-KCF LCT DSST DPM KCF S-KCF LCT DSST DPM

Raw 0.4963 0.5148 0.3847 0.5568 - 0.2580 0.2807 0.2233 0.2604 -

FusionCNN-v1 0.6208 0.6213 0.4347 0.4721 - 0.2743 0.2755 0.1940 0.2202 -

FusionCNN-v2 0.6561 0.6378 0.4546 0.5951 - 0.3480 0.3559 0.2752 0.2326 -

Density-aware [25] 0.2515 0.2349 - - 0.2231 0.1227 0.1012 - - 0.1193

4.4. Tracking with Color Cues

The previous experiment only uses edge intensity cues

(HOG), while color cues could also help to distinguish near-

by pedestrians to improve tracking performance in crowd-

s. Here we test tracking using intensity and RGB color

cues together (denoted as HOG+A). Table 4 summarizes

the tracking results, and all the trackers can be indeed im-

proved when incorporated with color cues and intensity

(e.g., KCF improves from 0.4235 to 0.5317 for UCSD, and

from 0.2251 to 0.2520 for PETS2009). The fusion model

can improve visual trackers more than incorporating color

and intensity cues (e.g., for UCSD, DSST tracker improves

from 0.4058 to 0.4364 using HOG+A features, while it im-

proves from 0.4085 to 0.5300 when fused with our fusion

CNN). The last row of the table (Fusion / HOG+A) shows

the fusion results using trackers with HOG+A features. For

UCSD and PETS, all the trackers can be further improved

(e.g., KCF improves from 0.5786 to 0.6495 on UCSD, and

improves from 0.3054 to 0.3257 on PETS2009).

Table 4. Tracking results using color cues and intensity for location

error threshold 10 (P@10).
Dataset UCSD PETS2009

❳
❳
❳
❳
❳

❳
❳

❳
❳
❳

Model

Tracker
KCF S-KCF LCT DSST KCF S-KCF LCT DSST

Raw / HOG 0.4235 0.4356 0.3932 0.4058 0.2251 0.2447 0.2048 0.2378

Raw / HOG + A 0.5317 0.5259 0.5146 0.4364 0.2520 0.2529 0.2350 0.2550

Fusion / HOG 0.5786 0.5999 0.5217 0.5300 0.3054 0.3326 0.2710 0.3196

Fusion / HOG + A 0.6495 0.6376 0.5956 0.5341 0.3257 0.3511 0.2967 0.3245

4.5. Crosscrowd and Crossscene Generalization

The experiment in Section 4.3 trained a separate fusion

model for each crowd level in PETS2009, since they have

uniquely different properties. Here, we report the track-

ing results when using uniform fusion model trained on all

crowd levels in Table 5. For simplicity, we only take S-KCF

tracker for an example. Overall, the uniform fusion model

performs a little worse than the separate model (the aver-

age P@10 of 0.3245 vs 0.3326, and the average IoU = 0.5

of 0.3381 vs 0.3559). However, the uniform fusion model

can still significantly improve S-KCF tracker (the average

P@10 improves from 0.2447 to 0.3245, and the average IoU

= 0.5 improves from 0.2807 to 0.3381). L2 accounts for

about half of the whole training dataset. In order to train the

uniform model, we augment L1 and L3 for balancing the

training dataset. The augment results in the performance

of the uniform model degradation on L2, but the uniform

model can still improve S-KCF on L2 (average P@10 im-

proves from 0.1345 to 0.1781). Also, the uniform model

can improve S-KCF more than separate model on L1 (aver-

age P@10 of 0.7332 of 0.5466).

We also evaluate training and testing across crowd-

levels, where the fusion model is trained only on either L1,

L2 or L3. Each model performs well on its own training

scene (e.g., “L1-trained” performs well on L1), but may

5359

perform bad on other scenes. “L2-trained" and “L3-trained

model" also can improve the performance on L1, while they

perform bad between each other. Since each scene in PET-

S2009 has different properties, thus training a separate mod-

el for each scene may be a good choice to improve the track-

ing performance.

Finally, we evaluate the cross-scene generalization abili-

ty of the fusion model. We also take S-KCF tracker for ex-

ample. We first use the model trained on UCSD to test track-

ing on PETS2009, and the performance becomes worse

compared to the raw tracker (average P@10 of 0.1163 vs

0.2447). However, the uniform model trained on PETS2009

improves the tracking on UCSD, from P@10 of 0.4356 to

0.4551. This suggests that intersecting paths in PETS2009

make it more difficult than UCSD.
Table 5. Evaluations using cross-crowd-level models.
Scene Sparse density L1 Medium density L2 High density L3 Average

❳
❳

❳
❳

❳
❳
❳

❳
❳
❳

Model

Metric
P@10 IoU=0.5 P@10 IoU=0.5 P@10 IoU=0.5 P@10 IoU=0.5

Raw 0.3705 0.4974 0.1345 0.1425 0.4810 0.5481 0.2447 0.2807

Separate model 0.5466 0.7124 0.2188 0.2071 0.5354 0.5835 0.3326 0.3559

Uniform model 0.7332 0.9585 0.1781 0.1678 0.5203 0.4949 0.3245 0.3381

L1-trained model 0.5466 0.7124 0.0670 0.0567 0.2608 0.4291 0.1692 0.2221

L2-trained model 0.4896 0.5855 0.2188 0.2071 0.3873 0.5114 0.2906 0.3239

L3-trained model 0.5984 0.7073 0.1092 0.1143 0.5354 0.5835 0.2680 0.2955

4.6. Comparison of fusion CNN architectures

In this subsection we compare different variations of the

fusion CNN architecture. To evaluate the effectiveness of

the three-layer CNN, we tested a two-layer CNN by remov-

ing Conv2, and a four-layer CNN by adding a new convo-

lutional layer with 32 3×3×64 filters after Conv1. We also

tested the effect of using different input modalities by us-

ing only two of the input channels, by removing either the

image patch channel, the crowd density channel, or the re-

sponse map channel. To test the effectiveness of the crowd-

density map, we also tried replacing the crowd density map

with the DPM detection score map. Another baseline com-

parison is to directly (element-wise) multiply the response

map by the crowd density to obtain a fused response map.

Finally, a three-layer CNN is trained only using the real-

tracking procedure (stage-2 of the two-stage training) to test

the effectiveness of our proposed two-stage training strate-

gy. We tested all these variations on the UCSD dataset using

the S-KCF tracker.

Fig. 7 shows the average tracking results on the UCSD

dataset. The three-layer CNN performs better than the t-

wo or four layer versions. Using all three input channels

performs better than using any of the two channels as in-

put. This demonstrates that the three input modalities are

complementary and each provides useful information. Fi-

nally, the model trained using the two-stage training strate-

gy achieves better results than using just one-stage training,

either "batch" (stage-1) or "real-tracking" (stage-2).

5. Conclusions

In this paper, we address the problem of people track-

ing in crowd scenes. Using a sparsity constraint on the re-

Figure 7. Tracking results on UCSD dataset for architecture varia-

tions of our fusion CNN.

KCF S-KCF LCT Ours Ground truthDSST Density-aware

#24 #135 #184

#14 #41 #181

#3 #46 #73

#25 #60 #124

Figure 8. Tracking results on UCSD dataset (the first two rows)

and PETS2009 dataset (the last two rows). We show the results

using color images for clear visualization.

sponse map, we first design a sparse KCF tracker to sup-

press response variations caused by occlusions and illumi-

nation changes, as well as similar distractor objects. We

fuse the appearance-based tracker and crowd density map

together with a three-layer fusion CNN to produce a refined

response map. Experimental results show that our fusion

framework can improve the people tracking performance of

appearance-based trackers in crowd scenes.

6. Acknowledgements

The work described in this paper was supported by

a grant from the Research Grants Council of the Hong

Kong Special Administrative Region, China (Project No.

[T32-101/15-R]), by a Strategic Research Grant from C-

ity University of Hong Kong (Project No. 7004887), and

by the Natural Science Foundation of China under Grant

61333019. We gratefully acknowledge the support of N-

VIDIA Corporation with the donation of the Tesla K40 G-

PU used for this research.

5360

References

[1] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and P. H.

Torr. Staple: Complementary learners for real-time tracking.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 1401–1409, 2016.

[2] D. M. Blei and J. D. Lafferty. A correlated topic model of

science. The Annals of Applied Statistics, pages 17–35, 2007.

[3] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M.

Lui. Visual object tracking using adaptive correlation filters.

In Computer Vision and Pattern Recognition (CVPR), 2010

IEEE Conference on, pages 2544–2550. IEEE, 2010.

[4] A. B. Chan, Z.-S. J. Liang, and N. Vasconcelos. Privacy pre-

serving crowd monitoring: Counting people without people

models or tracking. In Computer Vision and Pattern Recog-

nition, 2008. CVPR 2008. IEEE Conference on, pages 1–7.

IEEE, 2008.

[5] A. B. Chan and N. Vasconcelos. Counting people with low-

level features and bayesian regression. IEEE Transactions

on Image Processing, 21(4):2160–2177, 2012.

[6] M. Danelljan, G. Häger, F. Khan, and M. Felsberg. Accurate

scale estimation for robust visual tracking. In British Ma-

chine Vision Conference, Nottingham, September 1-5, 2014.

BMVA Press, 2014.

[7] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg.

Learning spatially regularized correlation filters for visual

tracking. In Proceedings of the IEEE International Confer-

ence on Computer Vision, pages 4310–4318, 2015.

[8] M. Danelljan, A. Robinson, F. S. Khan, and M. Felsberg.

Beyond correlation filters: Learning continuous convolution

operators for visual tracking. In European Conference on

Computer Vision, pages 472–488. Springer, 2016.

[9] M. Danelljan, F. Shahbaz Khan, M. Felsberg, and J. Van de

Weijer. Adaptive color attributes for real-time visual track-

ing. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1090–1097, 2014.

[10] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part-

based models. IEEE transactions on pattern analysis and

machine intelligence, 32(9):1627–1645, 2010.

[11] L. Fiaschi, U. Koethe, R. Nair, and F. A. Hamprecht. Learn-

ing to count with regression forest and structured labels. In

Pattern Recognition (ICPR), 2012 21st International Confer-

ence on, pages 2685–2688. IEEE, 2012.

[12] D. Held, S. Thrun, and S. Savarese. Learning to track at 100

fps with deep regression networks. In European Conference

on Computer Vision, pages 749–765. Springer, 2016.

[13] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. Ex-

ploiting the circulant structure of tracking-by-detection with

kernels. In European conference on computer vision, pages

702–715. Springer, 2012.

[14] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-

speed tracking with kernelized correlation filters. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

37(3):583–596, 2015.

[15] H. Idrees, I. Saleemi, C. Seibert, and M. Shah. Multi-source

multi-scale counting in extremely dense crowd images. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2547–2554, 2013.

[16] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolution-

al architecture for fast feature embedding. In Proceedings

of the 22nd ACM international conference on Multimedia,

pages 675–678. ACM, 2014.

[17] H. Kiani Galoogahi, T. Sim, and S. Lucey. Correlation filters

with limited boundaries. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

4630–4638, 2015.

[18] V. Lempitsky and A. Zisserman. Learning to count objects

in images. In Advances in Neural Information Processing

Systems, pages 1324–1332, 2010.

[19] X. Li, W. Hu, C. Shen, Z. Zhang, A. Dick, and A. V. D. Hen-

gel. A survey of appearance models in visual object track-

ing. ACM transactions on Intelligent Systems and Technolo-

gy (TIST), 4(4):58, 2013.

[20] C. Ma, X. Yang, C. Zhang, and M.-H. Yang. Long-term

correlation tracking. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5388–

5396, 2015.

[21] Z. Ma, L. Yu, and A. B. Chan. Small instance detection by

integer programming on object density maps. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3689–3697, 2015.

[22] A. Milan, S. Roth, and K. Schindler. Continuous energy min-

imization for multitarget tracking. IEEE transactions on pat-

tern analysis and machine intelligence, 36(1):58–72, 2014.

[23] R. Rifkin, G. Yeo, and T. Poggio. Regularized least-squares

classification. Nato Science Series Sub Series III Computer

and Systems Sciences, 190:131–154, 2003.

[24] M. Rodriguez, S. Ali, and T. Kanade. Tracking in unstruc-

tured crowded scenes. In Computer Vision, 2009 IEEE 12th

International Conference on, pages 1389–1396. IEEE, 2009.

[25] M. Rodriguez, I. Laptev, J. Sivic, and J.-Y. Audibert.

Density-aware person detection and tracking in crowds. In

Computer Vision (ICCV), 2011 IEEE International Confer-

ence on, pages 2423–2430. IEEE, 2011.

[26] A. W. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara,

A. Dehghan, and M. Shah. Visual tracking: An experimental

survey. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 36(7):1442–1468, 2014.

[27] Y. Sui, Z. Zhang, G. Wang, Y. Tang, and L. Zhang. Real-

time visual tracking: Promoting the robustness of correlation

filter learning. In European Conference on Computer Vision,

pages 662–678. Springer, 2016.

[28] W. Xie, J. A. Noble, and A. Zisserman. Microscopy cell

counting with fully convolutional regression networks. In

MICCAI 1st Workshop on Deep Learning in Medical Image

Analysis, 2015.

[29] L. Xu, C. Lu, Y. Xu, and J. Jia. Image smoothing via l0 gra-

dient minimization. ACM Transactions on Graphics (SIG-

GRAPH Asia), 2011.

[30] C. Zhang, H. Li, X. Wang, and X. Yang. Cross-scene crowd

counting via deep convolutional neural networks. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 833–841, 2015.

5361

[31] K. Zhang, L. Zhang, Q. Liu, D. Zhang, and M.-H. Yang. Fast

visual tracking via dense spatio-temporal context learning. In

European Conference on Computer Vision, pages 127–141.

Springer, 2014.

[32] Y. Zhang, D. Zhou, S. Chen, S. Gao, and Y. Ma. Single-

image crowd counting via multi-column convolutional neu-

ral network. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 589–597, 2016.

5362

