
 
Abstract 

We propose an adaptive figure-ground classification 
algorithm to automatically extract a foreground region 
using a user-provided bounding-box. The image is first 
over-segmented with an adaptive mean-shift algorithm, 
from which background and foreground priors are esti-
mated. The remaining patches are iteratively assigned 
based on their distances to the priors, with the foreground 
prior being updated online. A large set of candidate seg-
mentations are obtained by changing the initial foreground 
prior. The best candidate is determined by a score function 
that evaluates the segmentation quality. Rather than using 
a single distance function or score function, we generate 
multiple hypothesis segmentations from different combi-
nations of distance measures and score functions. The final 
segmentation is then automatically obtained with a voting 
or weighted combination scheme from the multiple hy-
potheses. Experiments indicate that our method performs 
at or above the current state-of-the-art on several datasets, 
with particular success on challenging scenes that contain 
irregular or multiple-connected foregrounds. In addition, 
this improvement in accuracy is achieved with low com-
putational cost. 

1. Introduction 
Foreground extraction in still images plays a key role in 

vision applications [1]. Popular approaches include inter-
active graph cut [2], random walk [3], geodesic [4], in-
formation theory [5], and variational solutions [6]. On the 
one hand, we are looking for better interactive approaches 
that provide a priori knowledge to guide segmentation.  
Bounding box assignment and seed positioning are two 
representative methods [7,8]. On the other hand, we desire 
simple models that free users from troublesome algorithm 
design. The uncertainty of model selection and goodness 
evaluation makes robust segmentation difficult [9,10]. 
Different models lead to different results and there exists no 
dominant winner [11]. Recent attempts report encouraging 
results through the aid of reference distributions or multiple 
hypotheses [12,13], although widely applicable solution in 
the absence of a priori knowledge remains a big challenge. 
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   (f) DK multiple hypotheses   (g) DM multiple hypotheses 
 
 

       
   (h) similarity voting result              (i) probability map result 

Figure 1. Adaptive figure-ground classification pipeline 
1st row: Adaptive mean-shift patches generation;      
2nd row: Multiple candidates from multiple initializations; 
3rd row: Multiple hypotheses by eight evaluation scores;  
4th row: Two Automatic selection results. 

The possibility of foreground extraction from a box in-
put was explored in recent work [7,12,14,15]. However, 
these methods suffer from restrictive assumption about 
latent distributions [12], inability to treat complicated scene 
topologies [14], or inefficient similarity measure [15]. In 
this paper, we propose a box-based foreground extraction 
method that gives promising solutions in a broadly appli-
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cable environment. The pipeline of our framework is il-
lustrated in Figure 1. Under the assumption that a mask box 
can provide good statistical information about the back-
ground, we design an online figure-ground classification 
algorithm. Image patches (super-pixels) are formed using 
an adaptive mean-shift algorithm in a 5D joint color-spatial 
feature space. Two novel probability distances are defined 
to measure the similarities between image patches, and 
multiple hypotheses are generated from various initial 
foreground maps and different score functions. The final 
segmentation is obtained by a voting scheme or a weighted 
combination of the multiple hypotheses. This method is not 
sensitive to difficult scene topology and reliably treats 
multi-connected, multi-hole foregrounds. 

The remainder of this paper is organized as follows.  
Section 2 presents our figure-ground classification frame-
work.  Section 3 gives experimental results on several 
image datasets. Section 4 concludes the paper. 

2. A figure-ground classification framework 
Our segmentation algorithm is based on a user-specified 

mask box that defines the background prior, as in previous 
approaches [7, 16]. Either side of the box can be defined as 
the background mask, which contains only background 
pixels. The complement of the background mask makes the 
foreground mask, which may contain both foreground and 
background elements. The mask box can flexibly handle 
different cases of partially-inside or multiply connected 
foreground. An example mask box is shown in Figure 1a, 
with more examples in Figures 5-8. 

2.1. Algorithm overview 

An overview of our foreground extraction algorithm 
appears in Figure 1. Under the assumption that a mask box 
is able to provide sufficient statistical information about the 
background, we treat the segmentation process as an online 
figure-ground (f-g) classification task. We first generate an 
over-segmented image using an adaptive mean-shift algo-
rithm, which partitions the original image, I, into a set of 
non-overlapping patches R={p1, p2, ..., pn}(Figures 1b and 
1c). Given this over-segmentation, our objective is to group 
the patches into a foreground category F and a background 
category B. That is, for every patch pi we perform a binary 
classification so that 
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To do this, each patch is modeled as a multivariate 
normal distribution in a 5D joint color-spatial feature space. 
Next, patches overlapped with the background mask are 
used to form the background prior. An initial foreground 
prior is obtained by selecting patches that are the most 
dissimilar to the background prior. The remaining patches 
are iteratively assigned based on their proximity to the 

foreground or background prior, with the foreground prior 
being updated with new patches. A large set of candidate 
segmentations is formed by initializing with different fore-
ground priors, and using different distance functions (Fig-
ures 1d and 1e). From this large set of candidates, multiple 
hypotheses are selected based on several evaluation scores 
that encourage different types of segmentations (Figures 1f 
and 1g). The final segmentation is then formed by com-
bining the multiple hypotheses, using either a similarity 
voting or a weighted sum scheme (Figures 1h and 1i).  

2.2. Patch making by adaptive mean-shift 

Defining the segmentation as the grouping of 
non-overlapping regions has become popular due to its 
advantages in information transfer and computational effi-
ciency [17,18,19]. We choose the mean-shift algorithm [17] 
to do over-segmentation since mean-shift patches are better 
described statistically in comparison to other super-pixel 
generators [20]. To remain consistent with the underlying 
probabilistic framework of the mean-shift algorithm, we 
model each mean-shift patch as a multivariate normal dis-
tribution. A feature vector in the 5D joint color-spatial 
feature space is given by 

yxbaLf ,,,, ,                 (2) 
where (x,y) are the 2D pixel coordinates and (L,a,b) are the 
pixel values in the Lab color space. We use the Lab color 
space because it is better modeled by a normal distribution 
in comparison to RGB [21]. Finally, we treat the 3D color 
features and the 2D spatial features identically, and hence 
distances defined over the feature space compare both 
visual similarity and spatial adjacency of the patches. 

The mean-shift result relies heavily on the two band-
width parameters, hs and hr, corresponding to the 2 spatial 
coordinates and the 3 color features. Different initial set-
tings lead to different super-pixel sets and only some of 
them are suitable for the subsequent classification [22]. 
This is illustrated in the first row of Figure 1, where the 
default setting of hs=7 and hr=6 generates cluttered patches 
and fails to transfer the background prior into the region of 
interest, whereas a bandwidth setting hs=10 and hr=8.6 
(determined by our adaptive scheme) generates much 
sparser patches and leads to good foreground extraction. 

Based on the relationship between the bandwidth pa-
rameters and the covariance matrix of the multivariate 
normal distribution [23], we propose the following scheme 
to adaptively set the bandwidths. First, an initial mean-shift 
segmentation is performed with the default bandwidths 
hs=7 and hr=6. Next, patches overlapped with the fore-
ground mask region are collected into the set F0, and the 
5x5 covariance matrix i for each patch pi is calculated, 
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The 3x3 submatrix i
(rr)  is the covariance matrix in the 



(L,a,b) subspace, the 2x2 submatrix i
(ss) is the covariance in 

the (x,y) subspace, and the 3x2 submatrix i
(rs)  is the co-

variance between color and location. Finally, the adaptive 
bandwidths are estimated by averaging the color/spatial 
variances over all collected patches in F0, 
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Whereas hs is estimated from the variance in both x- and 
y-directions, hr is estimated by averaging the Lab compo-
nents with largest variance, due to the observation that this 
component is often more dominant in the Lab space. By 
using the statistics from the foreground mask, our approach 
tunes the bandwidth parameters to form better representa-
tive patches in the foreground mask region. 

      
    (a)                 (b)               (c)                 (d)                (e) 
Figure 2. Treating cluttered textures with big bandwidths: (a) 
original image; (b) mean-shift patches under small bandwidths, 
and (c) the resulting segmentation; (d) mean-shift patches under 
big bandwidths, and (e) the resulting segmentation. 

In some cases, when the background contains repetitive 
cluttered textures, the adaptive mean-shift may produce too 
many image patches, and cause the background patches to 
be mainly distributed along the mask boundary (as in Fig-
ure 2). This will lead to a poor estimate of the background 
prior and a poor segmentation. We suggest a simple heu-
ristic to identify and circumvent these cases. If the initial 
mean-shift creates too many patches (>300) within the 
mask region, we double the bandwidths (hs=14,hr=12) to 
make super-pixels. Larger bandwidths merge small patches 
into big ones and extend the background prior deeper into 
the mask region. 

2.3. Similarity measure between patches 

In the next stage of the segmentation pipeline, patches 
are gradually assigned to the current background or fore-
ground regions, based on their distances to each region. We 
will represent a region as the set of its patches. Hence, we 
must first define a suitable distance measure between two 
patches, and between a patch and a region, i.e., a set of 
patches.  

We model each mean-shift patch pi as a multivariate 
normal distribution ),( iiN  in the 5D feature space defined 
in (2). The mean vector i  and the covariance matrix i  
are estimated by patch statistics. All patches are eroded 
with a radius-1 disk structuring element to avoid border 
effects. 

In this paper, we consider two distance measures. The 
first is the minimum KL-divergence between two patches,  

)),(),,(min(),( 122121 NNKLNNKLNNDK           (5) 

where N1 and N2 are two Gaussians, ),( 11N  and ),( 22N , 
and the KL-divergence between two d-dimensional Gaus-
sians is [24]  
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(5) is a symmetrized version of the KL divergence (6), and 
has an intuitive interpretation that the two patches are 
similar (i.e., should be grouped together) if either of them 
can be well described by the other. 

The second distance measure that we consider is the 
minimum Mahalanobis distance, 
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which is a variation of (5) that only considers the distance 
between the means of the patches.  

In general, there is no guarantee that one of DM and DK is 
better than the other, but they indeed provide beneficial 
complements to each other; (7) looks at the comparison of 
means, whereas (5) looks at the whole distribution. There-
fore, in our framework we will use both DM and DK meas-
ures and output multiple hypotheses to enhance the chance 
of obtaining a good segmentation. 

Given a distance D (either DM or DK), we define the dis-
tance from a single patch p to a region R as the minimum 
distance from the patch p to any patch in R, 
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and the distance between two regions R1 and R2 as the 
minimum distance between their patches, 
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(a) KL-divergence, 5D                 (b), Bhattacharyya, 3D 

 
(c) Mahalanobis, 5D                      (d) Mahalanobis, 3D 

Figure 3. MDS results of four different feature and distance con-
figurations for the row-1 image of Figure 5 (68 patches). 

To compare different feature and distance configurations, 
we use non-metric multidimensional scaling (MDS) [25] to 
embed patches from an image into a 2D space. Figure 3 
shows the embedded feature-space for various fea-
ture/distance combinations, with points marked according 



to their true foreground/background labels (fgLa-
bels/bgLabels), and inclusion in the background mask 
(bgPriors). The foreground and the background patches are 
better separated with the 5D DM and DK distances, com-
pared to the 3D Lab or Bhattacharyya distance [12,15]. In 
addition, Figures 3a and 3c reveal that, under DM and DK, 
the set of background prior patches is indeed representative 
of the whole background. 

2.4. Binary classification 

With the patch distances defined in Section 2.3 we build 
our foreground extraction algorithm. In light of the as-
sumption that the pre-assigned mask provides sufficient 
background statistics, we first initialize the background and 
foreground priors, and then gradually refine the segmenta-
tion by merging patches into the foreground. For simplicity, 
we consider a generic distance D, which can be either DM or 
DK from the previous section. 

The first step is to obtain the background prior B by se-
lecting patches overlapped with the background mask. 
Next, patches are selected for the initial foreground prior F 
if the distance from patch pi to the background prior B is 
greater than a threshold Dt, 

tii DBpDpL ),( if ,1)( .             (10) 
Considering the distance in (8), (10) selects a patch for the 
foreground prior if it is sufficiently far from all known 
background patches. 

 Starting from the initial foreground set F, we use a 
greedy search to progressively label the patches within the 
region of interest. First, all unlabeled patches are sorted in 
descending order by their distances from the background 
prior B. Patches are then labeled in turn by comparing them 
with the current background and foreground sets, 
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Because the feature space represents both color and loca-
tion, this scheme will favor selecting patches for the fore-
ground that are both visually similar and spatially close to 
the current foreground set. The foreground set F is updated 
online, when a new patch is assigned to the foreground. On 
the other hand, the background prior B remains fixed 
throughout, in order to avoid error propagation. This is 
based on the assumption that the background prior B con-
tains sufficient information about the background statistics. 

The above routine relies on a predefined threshold Dt. 
Different thresholds yield different segmentations.  Based 
on the fact that the squared probability distance from a 
sample of a Gaussian population to the center mode obeys a 

2  distribution [26], as implied by the Mahalanobis dis-
tance terms in (6) and (7), we can convert a confidence 
interval of the 2  distribution to a corresponding distance 
interval [Dl,Du], and use it to bound Dt. Then we exhaus-
tively try Dt thresholds over [Dl,Du], compute an evaluation 

score from every segmentation result, and output the solu-
tion associated with the highest score. In the next section, 
we show that this 1D brute-force search can be done very 
efficiently. In practice, we bound Dt loosely with Dl=5.0 
and Du=50.0, which correspond to 0.58 and 1-10-9 critical 
values of the 5-dof 2  distribution. This interval allows a 
big enough initial foreground prior set but excludes un-
necessary initializations. Figures 1d and 1e show an ex-
ample set of candidate segmentations produced by varying 
the threshold Dt, for both DM and DK. 

2.5. Generating multiple hypotheses 

The segmentation procedure in the previous section 
generates a large set of candidate segmentations by varying 
the threshold Dt. Taking into account the fact that percep-
tually meaningful segmentations may correspond to dif-
ferent cost functions, we generate multiple segmentation 
hypotheses by selecting the best candidate segmentations 
according to several evaluation scores. In particular, we 
consider three score functions that maximize the global 
distance between background and foreground patches, 
using the distance measure D: sum-cut, average-cut and 
maxmin-cut (abbreviated as s-cut, a-cut, and m-cut). Other 
score functions could also be easily incorporated to enclose 
any available prior knowledge (e.g., that of [13]). 

The sum-cut score function is defined as the sum of the 
distances D(f,B) from each foreground patch f to the back-
ground set, i.e. the selected threshold is given by 
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where F(Dt) and B(Dt) are respectively the foreground and 
the background sets in the final segmentation map com-
puted from the threshold Dt. 

Taking the average instead of the sum yields the aver-
age-cut score function: 
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Finally, the maxmin-cut score maximizes the minimum 
distance between foreground and background patches, 
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Each score function favors a different type of segmen-
tation.  m-cut prefers segmentations where the foreground 
and background pieces have a clear boundary in the feature 
space, corresponding to the global optimization of (9). 
a-cut yields segmentations where the global distance from 
the foreground to the background is sufficiently far, cor-
responding to the global optimization of (8). s-cut gives a 
conservative estimate of the solution near Dl, which is 
particularly good when a tight mask box is assigned. 

The combinatorial property of the distance functions in 
(8) and (9) ensures that the score functions (12-14) are not 
smooth within the interval [Dl,Du], but piecewise constant. 



In other words, the optimal value occurs in an interval of Dt, 
instead of at a single point. This fact simplifies the ex-
haustive search to a discrete search over a small set of 
threshold within the interval [Dl,Du]. We propose the fol-
lowing Dt-solving algorithm. First we sort all values of 
D(p,B) in ascending order, 

unnl DdddddD 1210 ... ,        (15) 
where n is the number of distances within [Dl,Du] in D(p,B) 
and di is the i-th smallest value. We then define a set of test 
Dt thresholds as the midpoints between two successive 
distances, SDt

{(di di 1) /2}i 0
n . The best scoring segmenta-

tion is determined by a discrete search, by running the 
figure-ground segmentation for each threshold in SDt . This 
method greatly reduces the computational cost in com-
parison to an exhaustive search, while also guaranteeing 
that the globally optimum is found. 

 
Figure 4. Three Dt-score curves for the row-3 image of Figure 5. 

Figure 4 shows an example of the three Dt-score func-
tions sampled at all key Dt points (plotted as red dots). It is 
worth mentioning that the solutions to m-cut may not be 
unique. For example, the optimal m-cut interval spans 3 
different candidates in Figure 4. We note that different 
m-cut solutions along the optimal interval tend to have 
slightly different appearances. Hence, we select two hy-
potheses from the m-cut score function, corresponding to 
the left and the right ends of the optimal interval. In total, 
we generate 8 hypothesis segmentations for each image 
(one s-cut, one a-cut, two m-cuts for each distance function 
DM and DK), as illustrated in Figures 1f and 1g. 

Overall, the labeling algorithm under one evaluation 
score can be deemed as a hill-climbing optimization with 
multiple initializations. Each threshold Dt starts a greedy 
searching procedure from an initial position and ends at a 
local peak. The adoption of multiple initializations reduces 
the risk of getting stuck to local optimum. The strategy of 
multiple evaluation scores greatly adds the chance of suc-
cess and provides a representative candidate group for the 
final automatic or manual selection. 

2.6. Automatic hypotheses selection 

Given the multiple hypotheses, we borrow the idea of 
classifier fusion to automatically obtain the final segmen-
tation [27]. We propose two methods for determining the 
final segmentation by pooling over all the hypotheses. 

The first scheme, which we denote as similarity voting, 
is based on the assumption that a good solution is likely to 
be selected by different score functions. Therefore, we let 
the eight hypotheses vote and output the winning segmen-
tation. (i.e. the most common whole segmentation). In the 
case of multiple winners, we select the one most similar to 
the other hypotheses. The similarity between two fore-
ground areas F1 and F2 is defined by a scale invariant 
measure )/()(),( 212121 FFFFFFS [28].  

The second scheme, which we denote as probability map, 
computes the final segmentation from the weighted sum of 
the eight hypotheses. We first define the dissimilarity be-
tween two hypothesis segmentations by ),(1),( 2121 FFSFFD , 
and construct a symmetric affinity matrix A with entries 

)2/),(exp(),(),( 22
jiji FFDFFAjiA , where the parameter 

)(2 DVar  is determined from the pairwise distance value 
set [7,19]. Next, we build a probability map as the weighted 
sum of the hypothesis segmentations, 

i
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The weights are determined using the following con-
strained optimization, 
     max wT Aw, s.t. w 2 1.             (17) 
(17) finds the weights that maximize the total similarity 
among all weighted hypotheses. It is a standard Rayleigh 
quotient maximization problem, and the optimal w is given 
by the top eigenvector of A. (16) coarsely characterizes the 
probability that a patch belongs to the foreground. The final 
segmentation is obtained by binarizing P with a threshold 
Pt=0.5. Figures 1h and 1i show the final result produced by 
the similarity voting and the probability map methods. 

3. Experiments 
We perform experiments on several popular datasets and 

report both quantitative and qualitative results. To illustrate 
the advantage of multiple hypotheses generation, we also 
consider a user-selection procedure, where the user selects 
the best segmentation among the eight hypotheses. Ex-
periments were run on a desktop PC with an Intel core-i5 
CPU 2.8Ghz dual core processor and 8GB RAM. 

3.1. Results on four datasets with ground truths 

In this experiment, we consider 4 datasets.  The first two 
datasets are from the Weizmann evaluation dataset con-
taining 100 1-obj images and 100 2-obj images [29]. We 
also use the IVRG dataset [30] (1000 images) and the 
grabcut dataset [31] (50 images). 



    

     

     

    

    

    

     

     
original & mask   ground truth   similarity voting  user selection 
Figure 5. Weizmann test examples. Rows 1-3 are 1-obj examples. 
Rows 4-8 are 2-obj examples. The auto-selection is equally good 
as the user selection for rows 1,3,4,6,8; and slightly worse for 
rows 2,5,7. The outsides of the blue boxes or the inside of the red 
box define the background masks. 
 

    

    

    
Figure 6. IVRG test example results. Top: image & mask; middle: 
grabcut results; bottom: f-g classification auto-selection results. 

Figure 5 displays some example segmentations from the 
Weizmann dataset. Our adaptive f-g classification suc-
cessfully labels background holes and multiply connected 
components. It even identifies many details missed in the 
manual-made truths (rows 1, 2, 7 of Figure 5).  Figure 6 
shows some example segmentations from the IVRG dataset. 
Our method better segments foregrounds with strongly 
irregular contours, compared to grabcut [7].  

The performance on each image is evaluated using 
F-measure, F=2PR/(P+R), where P and R are the precision 
and recall values. Table 1 reports the 95% confidence in-
tervals of the average F-measure on each of the 4 datasets. 
First, looking at the single hypothesis segmentations pro-
duced by each of the four score functions and 2 distances, 
we note that there is no clear best score function or distance 
measure for all scenarios. For example, s-cut is best for 
Weizmann 1-obj, but does poorly on Weizmann 2-obj. The 
performances using the two distance functions, DM and DK, 
are also mixed, with the best function depending on the 
images. Leveraging multiple hypotheses, using our simi-
larity voting or probability map scheme, improves the 
F-measure on all the datasets (e.g., from 0.91 to 0.93 on 
Weizmann 1-obj, or 0.92 to 0.94 on IVRG). This im-
provement in performance indicates that the different score 
functions and distances complement each other, and that 
the automatic selection scheme is capable of identifying 
good segmentation among the multiple hypotheses. 

Table 1. F-measures on four image datasets. 
*: number of times auto-selection at least as good as user-selection. 

 Weizmann 1-obj Weizmann 2-obj ivrg images Grabcut images 
s-cut (DM) 
s-cut (DK) 

0.91 0.014 
0.91 0.014 

0.83 0.028 
0.82 0.030 

0.91 0.005 
0.91 0.005 

0.87 0.034 
0.86 0.035 

a-cut (DM) 
a-cut (DK) 

0.89 0.029 
0.89 0.031 

0.86 0.031 
0.84 0.036 

0.92 0.008 
0.91 0.009 

0.88 0.056 
0.90 0.044 

m1-cut (DM) 
m1-cut (DK) 

0.89 0.031 
0.89 0.033 

0.88 0.028 
0.87 0.029 

0.91 0.009 
0.91 0.010 

0.88 0.056 
0.91 0.044 

m2-cut (DM) 
m2-cut (DK) 

0.89 0.032 
0.89 0.034 

0.87 0.031 
0.86 0.034 

0.92 0.009 
0.91 0.010 

0.88 0.056 
0.91 0.054 

similarity voting 0.93 0.010(49*) 0.88 0.022(64) 0.94 0.004(456) 0.93 0.018(22) 
probability map 0.93 0.010(48) 0.88 0.022(58) 0.94 0.004(371) 0.93 0.016(21) 
user selection 0.94 0.009 0.89 0.021 0.96 0.003 0.94 0.015 

references 0.85 0.035 [7] 
0.93 0.009[13] 
0.87 0.010 [5] 

0.80 0.046 [7] 
0.68 0.053[9] 
0.66 0.066[17] 

0.93 0.006 [7] 0.89 0.033 [7] 

Comparing the two selection schemes, there is no statis-
tical difference in the F-measure between similarity voting 
and probability map. In general, the weights computed by 
probability map are strongly biased towards the similarity 
voting winners, and hence the results are similar. Similarity 
voting is easier to use, whereas probability map provides 
more flexibility by tuning the threshold Pt., e.g., as in Fig-
ure 7.  Adaptive selection of Pt is a topic of future work. 

     
   original  similarity voting   Pt=0.5          Pt=0.8          Pt=0.99 

Figure 7. Probability map threshold control 



Some images have a cluttered background but a rela-
tively simple foreground. This may hinder the background 
prior assumption. To treat these images we switch the roles 
of foreground and background. Namely, at the initialization 
stage we take the foreground region as the background and 
assign a bounding box fully enclosed by it (the green box in 
Figure 8). After the segmentation we reverse the fore-
ground and the background to obtain the final result. In our 
experiments this switch operation is executed for 4 images 
in the grabcut dataset and 6 images in the IVRG dataset. In 
all cases the method improves both grabcut and f-g classi-
fication. Figure 8 shows an image that can be improved by 
the switch operation. This example gives a rule of thumb 
for mask selection: the background mask should be statis-
tically simple and easily characterized by a bounding box. 

   
 (a) original & mask (b) f-g classification result (c) grabcut result 

Figure 8. A figure-ground switching example. 
The last row of Table 1 shows the results of some ref-

erence algorithms ([13,5,9,17,7]), in particular the grabcut 
algorithm using the same mask box initializations [7]. Our 
algorithm is comparable to state-of-the-art techniques for 
single connected foregrounds (Weizmann 1-obj), and out-
performs the state-of-the-art on multiple connected fore-
grounds (Weizmann 2-obj). Finally, user selection provides 
an upper-bound on the performance of the multiple hy-
pothesis approach. The automatic selection schemes per-
form close to the user selection. Improving auto-selection 
to match user-selection better is a topic of future work. 

For the grabcut image set, we also compare the error rate 
with the result reported in [15]. The error rate is defined as 
the percentage of mislabeled pixels within the foreground 
mask. Table 2 shows that f-g classification outperforms 
grabcut [7] and iterated distribution matching [15]. 
Table 2. Average error rate comparison on the grabcut image set 

Similarity voting Probability map grabcut[7] distribution matching[15]
5.7% 5.4% 8.1% 7.1% 

Finally, Table 3 compares the average running time and 
the average F-measures between the grabcut algorithm and 
the f-g classification using similarity voting for the four 
datasets.  The adaptive f-g classification improves on both 
execution speed and segmentation quality. 
Table 3. Performance comparison of grabcut and f-g classification 

  Weizmann 1 Weizmann 2 IVRG Grabcut 
grabcut 5.43 s 4.64 s 5.51 s 16.54 s time 
f-g 2.78 s 2.19 s 3.79 s 9.87 s 
grabcut 0.85 0.035 0.80 0.046 0.93 0.006 0.89 0.033 

F  
f-g 0.93 0.010 0.88 0.022 0.94 0.004 0.93 0.018 

3.2. The Berkeley segmentation dataset 

In a final experiment, we evaluate our method on the 

Berkeley segmentation dataset [32]. Figure 9 gives the 
manual selections of some challenging images in the 
Berkeley dataset (rows 1,2) and the grabcut dataset (row 3). 
The adaptive bandwidth parameters {hs,hr} computed by (4) 
are also given for the Berkeley examples. The adaptive 
initialization works well and generates good mean-shift 
patches. The two distance functions DK and DM comple-
ment each other, and improve the chance of producing 
good segmentations. The images in the figure show the 
advantages of multiple hypotheses and manual selection. 
That is, although automatic selection is quite powerful, it 
may still miss some better choices from the multiple hy-
potheses. Manual selection becomes important in such 
cases if high quality is demanded, especially for challeng-
ing background or foreground topologies. As a typical 
example, almost all connected components and all holes in 
image 370036 are successfully identified. 

4. Conclusion 
In this paper, we have proposed an adaptive fig-

ure-ground classification algorithm to automatically extract 
foreground region using a bounding-box based background 
prior. The image is first over-segmented by adaptive 
mean-shift. Then the background and foreground regions 
are gradually refined using the background and foreground 
priors. Multiple hypotheses are generated from different 
distance measures and evaluation score functions. The best 
segmentation is automatically selected with a voting or 
weighted combination scheme. Our method achieves great 
success for challenging scenes, particularly when there are 
irregular or multiple-connected foregrounds. 
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   117054*(DM, a/m,[10, 8.56])         105053(DM, s, [6, 4.08])       62096*(DM/K, a/m2, [8, 5.76])     253036(DM, a/m2, [6, 4.84])     21077*(DM/K, a/m1, [11, 5.54]) 

    
     314016*(DK, m, [9, 4.77])         361084(DM, m1, [6, 6.98])         361010(DK, m1, [9, 7.92])       310007*(DK, a/m2, [15, 4.49])      370036(DK, m2, [6, 4.93]) 

      
  388016*(DM/K, m)      227092(DM, m1)      181079(DM/K, m1)        grave*(DK, a/m)            sheep*(DM/K, a/m)            person3(DK, a)            person5*(DM, a/m2) 
Figure 9. Example user-selected segmentations (*: coincide with auto-selection; s: voted by s-cut; a: voted by a-cut; m: voted by m-cut)
The auto-selections (in supplemental materials) often coincide with the user-selections and are in general slightly worse in other cases.


