
Growing a Bag of Systems Tree for Fast and Accurate Classification

Emanuele Coviello1 Adeel Mumtaz2 Antoni B. Chan2 Gert R.G. Lanckriet1
1Dept. of ECE, University of California, San Diego 2 Dept. of CS, City University of Hong Kong

Abstract

The bag-of-systems (BoS) representation is a descriptor

of motion in a video, where dynamic texture (DT) codewords

represent the typical motion patterns in spatio-temporal

patches extracted from the video. The efficacy of the BoS

descriptor depends on the richness of the codebook, which

directly depends on the number of codewords in the code-

book. However, for even modest sized codebooks, mapping

videos onto the codebook results in a heavy computational

load. In this paper we propose the BoS Tree, which con-

structs a bottom-up hierarchy of codewords that enables ef-

ficient mapping of videos to the BoS codebook. By lever-

aging the tree structure to efficiently index the codewords,

the BoS Tree allows for fast look-ups in the codebook and

enables the practical use of larger, richer codebooks. We

demonstrate the effectiveness of BoS Trees on classification

of three video datasets, as well as on annotation of a music

dataset.

1. Introduction

The bag-of-system (BoS) representation [1], a high-level

descriptor of motion in a video, has seen promising results
in video texture classification [2]. The BoS representation
of videos is analogous to the bag-of-words representation
of text documents, where documents are represented by
counting the occurrences of each word, or the bag-of-visual-
words representation of images, where images are repre-
sented by counting the occurrences of visual codewords in
the image. Specifically, in the BoS framework the code-
book is formed by generative time-series models instead of
words, each of them compactly characterizing typical tex-
tures and dynamics patterns of pixels or low-level features
in a spatio-temporal patch. Hence, each video is represented
by a BoS histogram with respect to the codebook, by assign-
ing individual spatio-temporal patches to the most likely
codeword, and then counting the frequency with which each
codeword is selected. An advantage of the BoS approach is
that it decouples modeling content from modeling classes.
As a consequence, a codebook of sophisticated generative
models can be robustly compiled from a large collection of

videos, while simpler models, based on standard text min-
ing algorithms, are used to capture statistical regularities in
the BoS histograms representing the subsets of videos asso-
ciated to each individual class.

The BoS representation was originally proposed for
video texture classification [1], where a codebook of dy-
namic texture (DT) models was used to quantize prototypi-
cal patterns in spatio-temporal cubes corresponding to in-
terest points in videos, and was proven superior to stan-
dard methods based on modeling each video with a sin-
gle DT model [3]. The BoS representation is not limited
to video, but is also applicable as a descriptor to any type of
time-series data. In particular, the BoS framework has also
proven highly promising in automatic music annotation and
retrieval [4], registering significant improvements with re-
spect to current state of the art systems.

In practice, the efficacy of the BoS descriptor (or any
bag-of-words representation) depends on the richness of the
codebook, i.e., the ability to effectively quantize the feature
space, which directly depends on both the method of learn-
ing codewords from training data, and the number of code-
words in the codebook. For the former, the learning of good
codewords is addressed in [2] by using a hierarchical EM al-
gorithm. For the latter, increasing the number of codewords
also increases the computational cost of mapping a video
onto the codebook; indeed, the computational complexity is
linear in the number of codewords. For the standard bag-of-
visual-words, increasing the codebook size is typically not
a problem, since the simple L2-distance function is used
to identify the visual codeword closest to an image patch.
On the other hand, for the BoS in [2], finding the closest
codewords to a video patch requires calculating the likeli-
hood of a video patch under each DT codeword using the
Kalman filter. For even modest sized codebooks, this re-
sults in a heavy computational load. For example, the BoS
codebooks of [2] are limited to only 8 codewords.

To address the computational challenges of the BoS rep-
resentation, in this paper we propose the BoS Tree, which
combines the expressiveness of a large codebook with the
efficiency of a small codebook. Our proposed approach
constructs a bottom-up hierarchy of codewords, and then
leverages the tree structure to efficiently index the code-

1

Appears in IEEE Conf. on Computer Vision and Pattern Recognition, Providence, 2012.

words by choosing only the most-likely branches when
traversing the tree. In this way, the proposed BoS Tree

allows for fast look-ups on the codebook and consequently

enables the practical use of a larger BoS codebook.
The contributions of this paper are four-fold. First, we

propose the BoS Tree for fast-indexing of large BoS code-
books. Second, we apply the BoS Tree to video classifi-
cation, reducing the computational cost by at least one or-
der of magnitude versus a standard large codebook, without
loss in performance. In fact, the BoS tree improves on pre-
vious state-of-the-art results on two video texture datasets.
Finally, we apply BoS Trees to music annotation experi-
ments, showing suitability of the method to other types of
time-series data. The remainder of this paper is organized
as follows. In Section 2, we first review the BoS representa-
tion and DT model, while in Section 3 we propose the BoS
Tree. Finally, we present experiments on video classifica-
tion in Section 4, and on music annotation in Section 5.

2. The BoS representation

Analogous to the bag-of-words representation for text
documents, the bag-of-systems (BoS) approach [1] repre-
sents videos with respect to a vocabulary, where generative
time-series models, specifically a linear dynamical system

or dynamic texture, are used in lieu of words.

2.1. The DT codeword

In general, the content of a video is represented
by a set of T time series of low-level feature vectors
Y = {y(1)1:τ , . . . , y

(T)
1:τ }, which correspond to spatio-temporal

cubes sampled from the video, where T depends on the size
of the video and the granularity of the sampling process.
Each time series y(t)1:τ is composed of τ patches extracted
at consecutive frames. In the BoS representation, the code-
book discretizes the space of time-series using a set of dy-
namic texture codewords.

The dynamic texture (DT) model [5] represents time
series data by assuming that it is generated by a dou-
bly embedded stochastic process, in which a lower dimen-
sional hidden Gauss-Markov process Xt ∈ Rn encodes the
temporal evolution of the observation process Yt ∈ Rm.
Specifically, the DT model is described by a linear dynam-

ical system (LDS):

xt = Axt−1 + vt , (1)
yt = Cxt + wt + ȳ . (2)

and is specified by the parameters Θ = {A,Q,C,
R, µ, S, ȳ}, where the state transition matrix A ∈ Rn×n

encodes the dynamics of the hidden state variable (e.g.,
the evolution), the observation matrix C ∈ Rm×n en-
codes the basis functions for representing the sequence,

vt ∼ N (0, Q) and wt ∼ N (0, R) are the driving respec-
tively observation noises, the vector ȳ ∈ Rn is the mean
feature vector, and N (µ, S) specifies the initial condition.

2.2. Learning the codebook

The BoS codebook C is learned from a codebook training
set Xc, i.e., a collection of representative videos. A two-
stage procedure is typically used, where first each video is
summarized with a set of DTs, followed by clustering of the
video DTs to obtain the codewords.

In [1], spatio-temporal interest point operators are used
to extract interesting motion patches, from which DTs are
learned. The video DTs are then embedded into a Euclidean
space via non-linear dimensionality reduction in tandem
with the Martin distance. The embedded DTs are clustered
in the Euclidean space using the K-means clustering algo-
rithm. Finally, to represent each cluster, the learned DTs,
which map the closest to the cluster centers in the embed-
ding, are selected as the codewords.

An alternative approach, presented in [2], is based on the
probabilistic framework of the DT. For each video, spatio-
temporal patches are extracted using dense sampling, and a
dynamic texture mixture (DTM) is learned for each video
using the EM algorithm [6]. [2] then directly clusters the
video DTs using the hierarchical EM algorithm, producing
novel DT cluster centers that are used as the codewords.

While these two approaches effectively produce small-
sized codebooks (both [1, 2] use 8 codewords), they are only
applicable to small and simple datasets, e.g., UCLA 8-class
[1]. Indeed, they are not rich enough to produce accurate
classifications when applied to larger or more challenging
datasets, as demonstrated in Sections 4 and 5. A final ap-
proach [4] forms a large codebook by directly selecting each
DT from the video-level DTMs as a codeword. This forms
a very large (and hence rich) codebook, but has significant
computational cost when mapping to the codebook.

2.3. Projection to the codebook

Once a codebook is available, a video Y is represented
by a BoS histogram hY ∈ R|C| that records how often each
codeword appears in that video. To build the BoS histogram
of Y , we extract a dense sampling of spatio-temporal cubes
from Y . Each cube y(t)1:τ is compared to each codeword
Θi ∈ C by mean of its likelihood, efficiently computed with
the “innovations” form using the Kalman filter [7] . Defined
a quantization threshold k ∈ {1, . . . , |C|}, each cube is then
assigned to the k most likely codewords, and the BoS his-
togram for Y is finally built by counting the frequency with
which each codeword is selected. Specifically, the weight
of codeword Θi is calculated with

hY [i] =
1

|Y|
�

y(t)
1:τ∈Y

1

k
1[i ∈ k

argmax
i

P (y(t)1:τ |Θi)], (3)

where argmaxki returns the indices of the codewords with
the k-largest likelihoods. When the quantization threshold
k = 1, then (3) reduces to the typical notion of the term

frequency (TF) representation. The effect of k > 1 is to
counteract quantization errors that can occur when a time
series is approximated equally well by multiple codewords.

An alternative to the standard TF representation is the
term frequency-inverse document frequency (TF-IDF) rep-
resentation, which takes into account the statistics of the
training set by assigning more weight to codewords that ap-
pear less frequently in the collection, and down-weighting
codewords that are more common. Specifically, given the
BoS histogram hY for Y , the corresponding TF-IDF repre-
sentation is obtained with the following mapping:

ĥY [i] =
1

α
hY [i] · IDF [i], for i = 1, . . . , |C|, (4)

where the IDF factor is computed as

IDF [i] = log
|Xc|

|{Y ∈ Xc : hY [i] > 0}| (5)

and α normalizes the histogram.
Mapping a video Y to its BoS histogram hY requires

a total of |Y||C| likelihood computations, i.e., each spatio-
temporal cube y(t)1:τ ∈ Y has to be compared to each code-
word Θi ∈ C. When both |Y| and |C| are large, projecting
one video on the codebook is computationally demanding,
especially when using large video patches, which makes in-
dividual likelihood comparisons slow. Therefore, the de-
ployment of a large codebook is impractical due to the as-
sociated long delays. However, representing the variety of
visual information typical of large and diverse video collec-
tions requires a rich, large codebook. In the next section we
propose the BoS Tree which, by organizing codewords in a
bottom-up hierarchy, reduces the number of computations
necessary to index a large collections of codewords.

3. The BoS Trees

In this section we propose the BoS Tree, which consist
of a bottom-up hierarchy of codewords learned from a cor-
pus of representative videos. The bottom level of the tree
is formed by a large collection of codewords. A tree struc-
ture is then formed by repeatedly using the HEM algorithm
to cluster the codewords at one level and using the novel
cluster centers as codewords at the new level. Branches are
formed between the codewords at a given level and their
cluster center at the next higher level.

When mapping a new video onto the codebook, each
video patch is first mapped onto the codewords forming the
top-level of the BoS Tree. Next, the video patch is propa-

gated down the tree, by identifying branches with the most-
promising codewords (i.e., with largest likelihood). Select-

ing the most-likely branches reduces the number of like-
lihood computations, while also preserving the descriptor
quality, since portions of the tree that are not explored are
not likely to be codewords for that patch. In this way, the
BoS Tree efficiently indexes codewords while preserving
the quality of the BoS descriptor, and hence enables the de-
ployment of larger codebooks in practical applications.

In this section, we first discuss the HEM algorithm for
clustering dynamic textures, followed by the algorithms
used for forming and using the BoS Tree.

3.1. The HEM algorithm

Given a collection of DTs, the HEM algorithm for DTMs
(HEM-DTM) [2] partitions them into K clusters of DTs
that are “similar” in terms of their probability distributions,
while also learning a novel DT to represent each cluster.
This is similar to K-means clustering, with the difference
that the data points are DTs instead of Euclidean vectors.

Specifically, the HEM-DTM takes as input a DTM with
K(b) components and reduces it to a new DTM with
fewer components, i.e., K(r) < K(b). Given the input
DTM Θ(b) = {Θ(b)

i , π(b)
i }K(b)

i=1 , the likelihood of a spatio-
temporal cube y1:τ is given by

p(y1:τ |Θ(b)) =
K(b)�

i=1

π(b)
i p(y1:τ |z(b) = i,Θ(b)), (6)

where z(b) ∼ multinomial(π(b)
1 , · · ·π(b)

K(b)) is the hidden
variable that indexes the mixture components. p(y1:τ |z =
i,Θ(b)) is the likelihood of y1:τ under the ith mixture com-
ponent, and π(b) is the prior weight for the ith component.
The likelihood of the spatio-temporal cube y1:τ given the
reduced mixture Θ(r) = {Θ(r)

j , π(r)
j }K(r)

j=1 is given by

p(y1:τ |Θ(r)) =
K(r)�

j=1

π(r)
j p(y1:τ |z(r) = j,Θ(r)), (7)

where z(r) ∼ multinomial(π(r)
1 , · · · , π(r)

K(r)) is the hidden
variable for indexing components in Θ(r).

The HEM-DTM algorithm estimates (7) from (6) by
maximizing the likelihood of N virtual spatio-temporal
cubes Y = {Y i}K(b)

i=1 generated accordingly to Θ(b), where
Y i = {ym1:τ}

Ni
m=1 is a set of Ni = π(b)

i N samples drawn
from Θ(b)

i . In order to produce a consistent clustering of the
input DTs, the HEM algorithm assigns the whole sample
set Y i to a single component of the reduced model. As-
suming that the size of the virtual sample is appropriately
large, the law of large number allows the virtual samples
to be replaced with an expectation with respect to the in-
put DTs. A complete description of HEM-DTM appears in
[2], while here we note that the output of the HEM algo-
rithm is: (1) a clustering of the original K(b) components

Θ(1)
1 Θ(1)

2 Θ(1)
3 Θ(1)

4
. Θ(1)

K1 C(1)K1 =2000

K2 =64 2 Θ(1)
1 Θ(2)

1 Θ(1)
2

(1)Θ(2)
K2

Θ(1) C(2)

(1) C(3)(1)
3 Θ(3)

K3
Θ(3)

2 Θ(3)
1 ΘK3 =32 4 . . .

. . .

. . .

|Xc| =500

HEM

HEM

EM

. . .

Θ(1)
1 Θ(1)

2 Θ(1)
3 Θ(1)

4
(1)Θ(1)

K1

Θ(1)
1 Θ(2)

1 Θ(1)
2

(1)Θ(2)
K2

Θ

(1)
3 Θ(3)

K3
Θ(3)

2 Θ(3)
1 Θ

C(1)

(1) C(2)

(1) C(3)

κ(3) =2

κ(2) =2

κ(1) =3

Y

hY

(a) Building a BoS Tree. (b) Indexing with a BoS Tree.

Figure 1. (a) A BoS Tree is built from a collection of videos Xc

by forming a hierarchy of codewords. (b) The tree structure of the
BoS tree enables efficient indexing of codewords.

into K(r) groups, where the cluster membership is encoded
by the assignments ẑi,j = P (z(r) = j|z(b) = i), and (2)
novel cluster centers represented by the individual mixture
components of (7), i.e., {Θ(r)

j }K(r)

j=1 .

3.2. Building a BoS Tree

A BoS Tree is built from a collection of representative
videos Xc with an unsupervised clustering process based on
the HEM-DTM algorithm (Figure 1, left). The bottom level
of the tree C(1) = {Θ(1)

i }K1
i=1 consists of a large codebook

compiled by pooling together the DT codewords extracted
from individual videos in Xc (using the EM-DTM algorithm
for DTMs [6]). Starting from the bottom level, a BoS Tree
of L levels is built recursively using the HEM-DTM algo-
rithm L − 1 times. Each new level of the BoS Tree, i.e.,
C(�+1) = {Θ(�+1)

j }K�+1

j=1 , is formed by clustering the K�

DTs at the previous level � into K�+1 < K� groups us-
ing the HEM-DTM algorithm. In particular, the input mix-
ture is given by the DT codewords at level � with uniform
weight, i.e., Θ(b) = {Θ(�)

i , 1
K�

}K�
i=1, and the novel DT clus-

ter centers learned by the HEM-DTM algorithm are used as
codewords at the new level, i.e., C(�+1) = {Θ(r)

j }K�+1

j=1 .
The branches between contiguous levels in the BoS

Tree are instantiated as dictated by the assignment vari-
ables of the HEM-DTM algorithm, which is a function of
the Kullback-Leibler (KL) divergence between DTs at each
level. In particular, to connect level � + 1 to level �, we
define the set of branches for each codeword j ∈ [1K�+1]
from level �+ 1 as

B(�+1)
j = {i ∈ [1K�]|j = argmin

h
KL(Θ(�)

i ||Θ(�+1)
h)}. (8)

This is effectively the set of input DTs (at level �) that are
assigned to cluster j when constructing level � + 1 of the
BoS Tree. Finally, the BoS Tree T is the collection of code-
words at each level and their corresponding branch sets, i.e.,
T = {C(1), · · · , C(L), B(2), · · · , B(L)}.

3.3. Fast codewords indexing with BoS Trees

The BoS Tree T allows for quick look-ups in the large
codebook C(1), which forms the bottom level of the tree,
by leveraging the hierarchical structure to index the code-
words efficiently (Figure 1, right). To map a video Y to its
BoS histogram hY ∈ RK1 , we extract a dense sampling of
spatio-temporal cubes and propagate each cube down only
the more promising paths of the BoS Tree. In particular,
each cube y1:τ is initially compared to the codewords at the
top level of the BoS Tree (i.e., level L), and assigned to the
κ(L) most likely ones,

J (L) =
κ(L)

argmax
j∈[1KL]

p(y1:τ |Θ(L)
j). (9)

Next, the cube is propagated down to the successive level
following the branches that depart from the codewords se-
lected at the current level,

J (�) =
κ(�)

argmax
i∈

�
j∈J(�+1) B(�+1)

j

p(y1:τ |Θ(�)
i), (10)

for � = L− 1, L− 2, . . . , 2, 1.
At the bottom level of the BoS Tree (i.e., � = 1),

the number of occurrences of each codeword is registered,
and TF or TF-IDF histograms are then computed. Setting
the quantization thresholds [κ(1), . . . , κ(L)] to values larger
than 1 counteracts the effect of quantization errors and im-
proves the accuracy of the BoS (in comparison to the full
codebook computation), but increases the number of likeli-
hood computations.

An alternative to selecting a fixed number of codewords
at one level, is to select a variable number of codewords
based on the uncertainty of the BoS quantization. This is
implemented by defining the operator

Ω(J,T) = {j ∈ J |p(y1:τ |Θj) ≥ Tmax
h∈J

p(y1:τ |Θh)}

which selects all codewords whose likelihood is within a
threshold T away from the largest, and replacing (9) and
(10) with

J (L) = Ω([1KL],T
(L)) (11)

J (�) = Ω(∪j∈J(�+1)B
(�+1)
j ,T(�)). (12)

The BoS Tree reduces the number of likelihood com-
putations necessary to map a video to its codebook repre-
sentation. Assuming that a BoS tree has K top-level code-
words, L levels, and B branches on average per codeword,
the average number of likelihood computations required for
the BoS tree look-up is (K + B(L − 1)), which is much
less than the K · BL−1 computations required for directly
indexing the bottom-level of the tree. Therefore, the BoS

Tree enables the use of large and rich codebooks while still
maintaining an acceptable look-up time. As the portions of
the BoS Tree that are not explored are the ones that are not
likely to provide appropriate codewords for a given video
(in both the likelihood sense for a tested codeword, and KL-
divergence sense for the children of that codeword), there is
not expected to be a big loss in performance with respect to
linear indexing of a large codebook. We demonstrate this
experimentally in Sections 4 and 5.

3.4. Related Work

The bag-of-features “cousin” of our BoS Tree is the tree-
structured vector quantizer (TSVQ) [8], which creates a hi-
erarchical quantization of a feature space, and was proposed
by Nister et al. for efficiently indexing a large vocabulary of
image codewords [9], and by Grauman et al. to define the
bins of multi-resolution histograms [10]. The novelty of our
paper is that we apply tree-structured search to a codebook
formed by time-series models (i.e., DT models), instead of
to a VQ codebook of Euclidean vectors. Although a VQ
codebook could be extended to video patches, e.g., by con-
catenating all frames into a single vector, the resulting im-
age codewords would not handle spatio-temporal variations
well, and would be extremely high dimensional.

Efficient indexing of codewords is also related to fast
approximate nearest-neighbor (NN) search. Typical ap-
proaches to fast NN for real-vectors also exploit a tree
data structure, e.g., KD-trees and metric ball trees, and use
branch and bound methods to traverse the tree to find the
nearest neighbor [11, 12]. Cayton [13] generalizes metric
ball trees to Bregman divergences, enabling fast NN search
of histograms using the KL divergence. Adapting approxi-
mate search using randomized trees [14] to time-series (us-
ing DTs) would be interesting future work.

The BoS Tree proposed here is similar to the Bregman-
ball tree in [13], in that both use KL divergence-based clus-
tering to hierarchically construct a tree. The main differ-
ences are that our BoS Tree is based on continuous proba-
bility distributions (in fact random processes), while [13] is
limited to only discrete distributions, and that our nearest-
neighbor search is based on data likelihood, not KL di-
vergence. In addition, we use a simple forward search to
traverse the tree, whereas [13] uses a more complicated
branch-and-bound method. Experimentally, we found that
the forward search was both efficient and accurate.

Finally, our BoS Tree is also related to fast image re-
trieval work by [15], where each image is modeled as a
Gaussian distribution and a retrieval tree is constructed us-
ing the HEM algorithm for Gaussian mixture models.

4. Experiments: video classification

In this section we evaluate the proposed BoS Trees for
video classification on three datasets.

Figure 2. Example frames from UCLA-39. Right views (top) are
visually different from the corresponding left views (bottom).

boxing handclapping handwaving jogging running walking

Figure 3. Example frames from KTH. There are 6 actions.

4.1. Datasets

We consider three datasets, the UCLA-39 dataset [16],
the DynTex-35 dataset [17] and the KTH dataset [18]. The
first two datasets are composed of video textures, while the
third dataset consists in human actions.

UCLA-39: The UCLA-39 dataset [16] contains 312
gray-scale videos representing 39 spatially stationary

classes, which were selected from the original 50 UCLA
texture classes [3]. Each video is cropped into a right por-
tion and a left portion (each 48×48), with one used for train-
ing and the other for testing. Classification of UCLA-39 is
a challenging task, and tests the translation invariance of the
feature descriptor, since the training video patch (right por-
tion) is visually quite different from the testing patch (left
portion, or vice versa). While other UCLA-based datasets
could be used (e.g., [3, 1, 19]), we believe that UCLA-39 is
the most challenging variant and hence we adopt it in this
paper. Figure 2 illustrates typical frames from UCLA-39.

DynTex-35: The DynTex-35 dataset [17] is a collec-
tion of videos from 35 different texture classes from every-
day surroundings. Originally, the data consisted of a single
video of size 192 × 240 × 50 per class. As in [17] , each
video is split into 10 non-overlapping sub-videos (each hav-
ing different spatial and temporal dimensions).

KTH: The KTH dataset [18] consists of 2391 videos
of six types of human actions (walking, jogging, running,
boxing, hand waving and hand clapping) performed several
times by 25 subjects in different scenarios (outdoors, out-
doors with scale variation, outdoors with different clothes,
and indoors). Each sequence is downsized to 160×120 pix-
els and have a length of 4 seconds in average. We follow the
leave-one-out experimental protocol. Typical frames from
KTH are illustrated in Figure 3. Note that, although the
overall motion in KTH may not be stationary, we demon-
strate that our BoS descriptor can represent local patches of
motion sufficiently well (Section 4.3).

4.2. Experiment setup

From each video we extract a dense sampling of spatio-
temporal cubes of size 5×5×75 for UCLA-39, 7×7×30 for

Table 1. Distances and kernels used for classification.

square-root distance (SR) ds(h1, h2) = arccos(
�

k

√
h1kh2k)

χ2-distance (CS) dχ2 (h1, h2) = 1
2

�
k

|h1k−h2k|
h1k+h2k

χ2 kernel (CSK) K(h1, h2) = 1 −
�

k
(h1k−h2k)2

1
2 (h1k+h2k)

Intersection kernel (HIK) K(h1, h2) =
�

k min(h1k, h2k)

Bhattacharyya kernel(BCK) K(h1, h2) =
�

k

√
h1kh2k

DynTex-35, and 7× 7× 10 for KTH. We retain only video
cubes with a minimum total variance of 1 for UCLA-39 and
DynTex-35, and 5 for KTH.

For each cross-validation split in our datasets, the BoS
Tree was learned from the training set only. For each video,
a DTM with Kv = 4 components is learned from its spatio-
temporal cubes using the EM-DTM algorithm. The DTs
from all videos are collected to form the DT codewords,
i.e., K1 = Kv|Xc|, where |Xc| is the size of the training set.
The BoS Tree is then formed by successively applying the
HEM-DTM algorithm, as described in the previous section.
We test different trees for L ∈ {2, 3, 4} levels, using K2 =
64, K3 = 32 and K4 = 16. We used κ(�) = κ = 1 or
T(�) = T = 0.995 for traversing the BoS Trees.

For video classification, we first map all the videos to
their BoS histograms using the learned BoS Tree, to rep-
resent the visual content of each video. We then use a k-
nearest neighbor (k-NN) classifier or multi-class support
vector machine (SVM) for the video classification task. In
order to account for the simplicial structure of BoS his-
tograms, we build our k-NN classifier in terms χ2-distance
(CS) or square root-distance (SR) (Table 1), which are ap-
propriate distance metrics for histograms. Similarly, for
SVM we use the chi-squared kernel (CSK), Bhattacharyya
kernel (BCK), or histogram intersection kernel (HIK), as in
Table 1. The LibSVM software package [20] was used for
the SVM, with all parameters selected using 10-fold cross-
validation on the training set.

In addition to BoS Trees, we also consider several alter-
native methods for BoS histograms: direct indexing of the
large level-1 codebook (of sizes 624 and 630 on UCLA-
39 and DynTex-35); and using a reduced codebook of size
K ∈ {16, 32, 64}, obtained with the HEM-DTM algo-
rithm as in [2]. For each experiment we registered av-
erage (per video) classification accuracy and average (per
video) number of likelihood computations executed at test
time to produce the BoS histograms, from which we com-
puted the speed up with respect to the large level-1 code-
book (X-Speedup). A small number of likelihood compu-
tations results in faster look-ups in the codebook, and in a
larger speedup. Finally, results are averaged over 2 trials
on UCLA-39 (the right sub-video used for training and the
left for testing, and vice versa), and leave one sub-video out
classification for DynTex-35, with one sub-video from all
classes used for testing and the remainder for training.

4.3. Video classification results

Table 2 reports classification results on UCLA-39 and
DynTex-35. Each row refers to the combination of a spe-
cific classifier with TF or TF-IDF representation, while
columns correspond to different techniques to map videos
to BoS histograms: direct-indexed large codebook (large
CB), a reduced codebook (reduced CB), and our proposed
BoS Tree. Several observations can be made from the re-
sults on UCLA-39. First, increasing the codebook size
(with direct indexing) substantially increases the classifi-
cation performance, e.g., with accuracy increasing from
41.35% for 16 codewords to 81.73% for 624 codewords,
using TF-IDF and HIK-SVM. However, the computational
cost also increases substantially, from requiring 7377 like-
lihood computations per video (about 5 seconds on a stan-
dard desktop PC) to 287,690 (about 182 seconds). Second,
using BoS Trees leads to the best performance while re-
quiring only a fraction of the likelihood computations nec-
essary when directly indexing a large codebook. For ex-
ample with TF-IDF and HIK-SVM, using a 2-level code-
book improves accuracy to 82.37%, while also decreasing
the average number of likelihood computations to 36,393
(23 seconds), an almost 8 times reduction in computation.
For other classifiers, the accuracy is on par, or decreases
slightly, compared to the large CB. These results demon-
strate that the BoS Trees efficiently and effectively index
codewords, and hence allow practical use of a large and rich
codebook. Third, although they use about the same num-
ber of likelihood operations, BoS Trees significantly outper-
form the reduced codebooks generated with HEM-DTM in
terms of classification accuracy. While the former leverages
the hierarchical structure of codewords to access a large
collection of codewords, the latter only reduces the size of
the codebook which does not result rich enough to produce
highly accurate classification. Lastly, using the BoS Tree
with L = 4 and setting the transversing threshold in (9) and
(10) to T = 0.995 leads to the best performance. By execut-
ing a limited number of additional likelihood computations
(only 30% more the BoS Tree with L = 4), the threshold
method is able to explore the sub-trees of similar codewords
when the patch has near equal preference to both.

Similar conclusions can be drawn on DynTex-35, al-
though the differences in classification accuracy are less
substantial due to the easiness of the classification task.
Again, we note that the BOS Tree achieves the same ac-
curacy as the direct-indexed large CB, while reducing the
computation by almost an order of magnitude.

Finally, the BoS Tree performance improves on the cur-
rent state-of-the-art reported in the literature [19, 16, 21, 17]
on the two textures datasets (last row of Table 2). On
UCLA-39, the accuracy has improved from 20% [16] or
42.3% [19] to 82.37% for BoS Tree. In contrast to [16],
which is based solely on motion dynamics, and [19], which

models local appearance and instantaneous motion, the BoS
representation is able to leverage both the local appear-
ance (for translation invariance) and motion dynamics of
the video to improve the overall accuracy.

In addition, on the KTH dataset our BoS Tree (L = 2,
K1 = 3040 codewords and K2 = 32) obtains a classifi-
cation accuracy of 92.3% when using TF-IDF and CSK-
SVM, which compares reasonably with results reported in
the literature (which range from 87.3% [22] to 95.7% [23]).
This shows the potential of BoS Trees as a universal motion
descriptor for classification of non-texture, non-stationary
videos, such as human actions. However, the compari-
son with state-of the art system suggests we could improve
our BoS Trees with interest point operators, scale-selection,
similar to those leveraged by [23] (95.7%) or [24] (93.2%).
This is a topic of future work. We also note that the va-
riety of codewords the BoS Tree can index is crucial to
achieve good classification results, as a reduced codebook
with K = 32 performed poorly with 72.8% accuracy.

5. Experiments: music annotation

In this section, we show the applicability of BoS Trees on
an additional type of time-series data, i.e., musical signals.

5.1. Dataset

We perform automatic music annotation on the CAL500
dataset (details in [25] and references therein), which is a
collection of 502 popular Western songs by as many differ-
ent artists, and provides binary annotations with respect to
a vocabulary of musically relevant tags (annotations or la-
bels), e.g., rock, guitar, romantic. In our experiments we
follow the same protocol as in [4] and consider the 97 tags
associated to at least 30 songs in CAL500 (11 genre, 14 in-
strumentation, 25 acoustic quality, 6 vocal characteristics,
35 mood and 6 usage tags).

5.2. Experiment setup

The acoustic content of a songs is represented by com-
puting a time-series of 34-bin Mel-frequency spectral fea-
tures (see [25]), extracted over half-overlapping windows
of 92 ms of audio signal. A dense sampling of audio-
fragments (analogous to spatio-temporal cubes in videos) is
then formed by collecting sequences of τ = 125 consecu-
tive feature vectors (corresponding to approximately 6 sec-
onds of audio), with 80% overlap. A BoS Tree is learned for
each cross-validation split from only the training data. The
first level of the BoS Tree is formed by estimating a DTM
with Ks = 4 components from each training song, and
then pooling all the DT components together. BoS Trees for
L ∈ {2, 3, 4} levels are tested, with K2 = 128, K3 = 64
and K4 = 32. We use κ(1) = 5 and κ(�) = 2 for � > 1.

We cast music annotation as a multi-class multi-label
classification task. In particular, given a training set of

Table 3. Music annotation results on CAL500, using a large code-
book, reduced codebooks, and BoS Trees. The last column reports
the speedup relative to large CB to build the BoS histograms at test
time.

Retrieval Annotation
MAP AROC P@10 P R F X-Speedup

large CB K = 1604 0.454 0.723 0.460 0.406 0.244 0.270 1

reduced CB
K = 128 0.403 0.668 0.402 0.342 0.209 0.227 12.55
K = 64 0.381 0.649 0.378 0.315 0.192 0.204 25.10
K = 32 0.368 0.634 0.368 0.298 0.180 0.191 50.20

BoS Tree
L = 2 0.445 0.712 0.451 0.398 0.24 0.261 8.24
L = 3 0.443 0.712 0.448 0.393 0.235 0.258 11.54
L = 4 0.439 0.711 0.448 0.394 0.232 0.255 14.31

SML-DTM [25] 0.446 0.708 0.460 0.446 0.217 0.264 1.03

audio-fragments and their annotations, for each tag we use
logistic regression (LR) to learn a linear classifier with a
probabilistic interpretation in tandem with the HIK kernel.
Given a BoS histogram h corresponding to a new song,
the output of the LR classifiers is normalized to a semantic
multinomial, i.e., a vector of tag posterior probabilities. We
use the LibLinear software package [26] for the LR classi-
fier, with all parameters selected using 4-fold cross valida-
tion on the training set.

On the test set, a novel test song is annotated with the 10
most likely tags, corresponding to the peaks in its semantic
multinomial. Retrieval given a one tag query involves rank
ordering all songs with respect to the corresponding entry
in their semantic multinomials. Performance is measured
with the same protocol as in [4]: for annotation, per-tag
precision (P), recall (R) and F-score (F), averaged over all
tags; and for retrieval, mean average precision (MAP), area
under the operating characteristic curve (AROC), and preci-
sion at the first 10 retrieved objects (P@10), averaged over
all one-tag queries. In addition, we register the average (per
song) number of likelihood computations executed at test
time. All reported metrics are result of 5-fold cross valida-
tion, where each song appears in the test set exactly once.
We compare our BoS Tree to recent results in music anno-
tation based on a large BoS codebook [4], and supervised
multi-class labeling with DTM models (SML-DTM) [25].

5.3. Music annotation results

In Table 3 we report annotation and retrieval perfor-
mance on the CAL500 dataset. Due to space constraints,
we report results only for LR using TF-IDF representation
and HIK kernel, but similar trends were noticed for TF rep-
resentation and other kernels.

We first note that the BoS Trees lead to near optimal per-
formance with respect to the direct-indexed large codebook
(implemented with k = 5 as in [4]) and SML-DTM, but re-
quire an order of magnitude less likelihood computations at
test time. In particular, in our experiments, the delay asso-
ciated to likelihood computations was 8 to 14 seconds per
song for the BoS Trees (depending on L), and 2 minutes for

Table 2. Video classification results on UCLA-39 and DynTex-35 using a large codebook, reduced codebooks, and BoS trees. Each row
reports the average classification accuracy of a different classifier/kernel combination. The final two rows report the speedup relative to
large CB to build the BoS histograms at test time, and reference results (Ref).

UCLA-39 DynTex-35

Method large CB reduced CB BoS Tree κ = 1 T = 0.995 large CB reduced CB BoS Tree κ = 1
|C| = 624 K = 64 K = 32 K = 16 L = 2 L = 3 L = 4 L = 4 |C| = 630 K = 64 K = 32 K = 16 L = 2 L = 3 L = 4

N CS 46.79 46.79 42.95 33.97 43.59 46.47 42.31 42.63 92.86 94.86 92.86 90.86 91.14 92.00 90.57
T N SR 62.82 52.88 42.31 34.94 60.90 58.01 55.13 58.33 98.00 98.57 97.71 94.57 98.29 98.00 98.29
F S CSK 62.82 52.88 44.87 33.33 60.26 58.97 57.05 59.29 98.29 97.14 96.29 89.43 98.00 98.29 98.86

V HIK 78.53 57.69 48.40 39.10 78.53 78.53 73.72 78.85 96.86 96.29 91.71 86.29 97.71 97.71 97.14
M BCK 71.79 52.88 45.19 38.78 71.15 71.15 69.55 72.12 96.57 94.57 92.57 84.29 96.29 96.86 96.57

T N CS 46.15 45.83 42.95 34.62 43.59 46.15 41.99 42.31 92.29 94.86 92.86 91.14 90.57 92.00 90.86
F N SR 65.38 56.09 45.19 36.22 61.22 58.97 56.41 60.58 98.00 98.29 97.43 94.29 98.00 98.00 98.00
I S CSK 61.22 53.53 45.51 37.50 61.86 59.94 59.62 60.90 98.29 97.14 96.29 89.43 97.71 97.43 98.00
D V HIK 81.73 58.01 48.40 41.35 82.37 82.37 79.81 83.33 97.14 96.57 92.29 85.43 97.43 97.43 97.71
F M BCK 74.36 55.13 51.92 40.06 73.72 74.04 72.76 75.32 96.57 95.14 91.71 82.57 96.57 96.29 96.29

Best 81.73 58.01 51.92 41.35 82.37 82.37 79.81 83.33 98.29 98.57 97.71 94.57 98.29 98.29 98.86
X-Speedup 1 9.75 19.50 39 7.91 12.46 17.39 12.74 1 9.84 19.69 39.37 8.31 13.56 19.47

Ref 42.3 [19], 20 [16], 15 [21] 97.14 [17]

direct-indexed large codebook and for SML-DTM. Second,
as with video classification, increasing the codebook size
improves the accuracy of music annotation and retrieval, by
increasing the richness of the codebook. Again, this justi-
fies the efficacy of large BoS codebooks and our proposed
BoS Tree for efficient indexing.

6. Conclusions

In this paper we have proposed the BoS Tree, which ef-
ficiently indexes DT codewords of a BoS representation us-
ing a hierarchical structure. The BoS Tree enables the prac-
tical use of larger and richer collections of codewords in the
BoS representation. We have proven the efficacy of the BoS
Tree on three video datasets, and on a music dataset as well.

Acknowledgements

E.C., A.B.C. and G.R.G.L. acknowledge support from
Google, Inc. E.C. and G.R.G.L. acknowledge support from
Qualcomm, Inc, Yahoo!, Inc., the Hellman Fellowship Pro-
gram, the Sloan Foundation, and NSF Grants CCF-0830535
and IIS-1054960. A.M. and A.B.C. were supported by the
Research Grants Council of the Hong Kong Special Admin-
istrative Region, China [9041552 (CityU 110610)]. This re-
search was supported in part by the UCSD FWGrid Project,
NSF Research Infrastructure Grant Number EIA-0303622.

References

[1] A. Ravichandran, R. Chaudhry, and R. Vidal, “View-invariant dy-
namic texture recognition using a bag of dynamical systems,” in
CVPR, 2009. 1, 2, 5

[2] A. B. Chan, E. Coviello, and G. R. G. Lanckriet, “Clustering dy-
namic textures with the hierarchical em algorithm,” in CVPR, 2010.
1, 2, 3, 6

[3] P. Saisan, G. Doretto, Y. Wu, and S. Soatto, “Dynamic texture recog-
nition,” in CVPR. IEEE, 2001. 1, 5

[4] K. Ellis, E. Coviello, and G. R. G. Lanckriet, “Semantic annotation
and retrieval of music using a bag of systems representation,” in Proc.

ISMIR, 2011. 1, 2, 7

[5] G. Doretto, A. Chiuso, Y. N. Wu, and S. Soatto, “Dynamic textures,”
Intl. J. Computer Vision, 2003. 2

[6] A. B. Chan and N. Vasconcelos, “Modeling, clustering, and segment-
ing video with mixtures of dynamic textures,” IEEE TPAMI, 2008. 2,
4

[7] R. H. Shumway and D. S. Stoffer, “An approach to time series
smoothing and forecasting using the EM algorithm,” Journal of Time

Series Analysis, 1982. 2
[8] A. Gersho and R. Gray, Vector quantization and signal compression.

Springer Netherlands, 1992, vol. 159. 5
[9] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary

tree,” in CVPR, 2006. 5
[10] K. Grauman and T. Darrell, “Approximate correspondences in high

dimensions,” NIPS, 2007. 5
[11] J. Bentley, “Multidimensional binary search trees used for associa-

tive searching,” Commun. ACM, pp. 509–517, 1975. 5
[12] J. Uhlmann, “Satisfying general proximity/similarity queries with

metric trees,” Information Processing Letters, 1991. 5
[13] L. Cayton, “Fast nearest neighbor retrieval for bregman divergences,”

in ICML, 2008. 5
[14] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object

retrieval with large vocabularies and fast spatial matching,” in CVPR,
2007. 5

[15] N. Vasconcelos, “Image indexing with mixture hierarchies,” in
CVPR, 2001. 5

[16] F. Woolfe and A. Fitzgibbon, “Shift-invariant dynamic texture recog-
nition,” Computer Vision–ECCV, 2006. 5, 6, 8

[17] G. Zhao and M. Pietikainen, “Dynamic texture recognition using lo-
cal binary patterns with an application to facial expressions,” IEEE

TPAMI, vol. 29, no. 6, pp. 915 –928, june 2007. 5, 6, 8
[18] C. Schuldt, I. Laptev, and B. Caputo, “Recognizing human actions:

A local svm approach,” in ICPR 2004. IEEE, 2004. 5
[19] K. Derpanis and R. Wildes, “Dynamic texture recognition based on

distributions of spacetime oriented structure,” in CVPR, 2010. 5, 6,
8

[20] C. Chang and C. Lin, “Libsvm: a library for support vector ma-
chines,” ACM TIST, 2011. 6

[21] A. B. Chan and N. Vasconcelos, “Probabilistic kernels for the clas-
sification of auto-regressive visual processes,” in CVPR, 2005. 6,
8

[22] M. Yang, F. Lv, W. Xu, K. Yu, and Y. Gong, “Human action detection
by boosting efficient motion features,” in ICCV. IEEE, 2009. 7

[23] A. Gilbert, J. Illingworth, and R. Bowden, “Action recognition using
mined hierarchical compound features,” IEEE TPAMI, 2011. 7

[24] M. Bregonzio, S. Gong, and T. Xiang, “Recognising action as clouds
of space-time interest points,” in CVPR. IEEE, 2009. 7

[25] E. Coviello, A. Chan, and G. Lanckriet, “Time Series Models for
Semantic Music Annotation,” IEEE TASLP, 2011. 7

[26] R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin, “Liblinear: A
library for large linear classification,” JMLR, 2008. 7

