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Abstract for more expressive kernels, e.g., compound kernels that
We propose a generalized Gaussian process modelmodel different trends in the data, or multiple kernel learn
(GGPM), which is a unifying framework that encompasses ing, where features are optimally combined by adjusting the
many existing Gaussian process (GP) models, such as GRveights on each feature’s kernel function.
regression, classification, and counting. In the GGPM  Because of these advantages, GP regression and classi-
framework, the observation likelihood of the GP model is fication have been applied to many computer vision prob-
itself parameterized using the exponential family distsib  lems, such as object classification [2], human action recog-
tion. By deriving approximate inference algorithms for the nition [3], age estimation [4], eye-gaze recognition [5],
generalized GP model, we are able to easily apply the sametracking [6], counting people [7, 8], crowd flow modeling
algorithm to all other GP models. Novel GP models are [9], anomaly detection [10], stereo vision [11,12], interp
created by changing the parameterization of the likelihood lation of range data [13] non-rigid shape recovery [14], 3d
function, which greatly simplifies their creation for task- human pose recovery [15-18], and latent-space models of
specific output domains. We also derive a closed-form ef-3d human pose [19-21]. However, despite their successes,
ficient Taylor approximation for inference on the model, many of these methods attempt to “shoe-horn” their com-
and draw interesting connections with other model-specific puter vision task into the standard GP regression frame-
closed-form approximations. Finally, using the GGPM, we work. In particular, while the standard GP regresses a con-
create several new GP models and show their efficacy intinuousreal-valuedfunction, it is often used to predidis-
building task-specific GP models for computer vision. crete non-negative integers (crowd counts [7] or age [4]),
1. Introduction non-negative real number; (disparity [11,12] or depth)13]
real numbers on a fixed interval (pose angles [15-18] or
In recent years, Gaussian processes (GPs) [1], a nonsquashed optical flow [10]), and coordinate pairs (bound-
parametric Bayesian approach to regression and classificaing boxes [5]). Hence, heuristics are required to convert
tion, have been gaining popularity in computer vision. For the real-valued GP prediction tosalid task-specific output
example, recent work [2] has demonstrated promising re-which is not optimal in the Bayesian setting. For example
sults on object classification using GP classification ard ac in [7], the real-valued GP prediction must be truncated and
tive learning. GPs have several properties that are désirab rounded to generate a proper count prediction, and it is not
for solving computer vision tasks. First, due to the Bayesia obvious how the predictive distribution over real-valuas c
formulation, GPs can be learned robustly from small train- be converted to one over counts.
ing sets, which is important in tasks where the amount of ~ Currently, to develop a new GP model for each of the
training data is sparse compared to the dimension of theabove regression tasks requires first finding a suitable dis-
model (e.g., large-scale object recognition, trackingh@d tribution for the output variable (e.g., Poisson distribnt
man pose modeling). Second, the GP regression producefor counting numbers, or a Gamma distribution for posi-
a predictive distribution, not just a single predicted ealu tive real values). Approximate inference is usually needed
thus providing a probabilistic approach to judging confi- due to the lack of conjugacy between the GP prior and the
dence in the predictions, e.g., for active learning. Third, observation likelihood. As a result, developing a new GP
GPs are based on kernel functions between the input ex-model typically requires lengthy derivations of approxiema
amples, which allows for both a diverse set of image rep- inference for each particular likelihood function. What is
resentations (e.g., bag-of-words, local-feature detmsj, currently lacking is @eneralframework that unifies the ex-
and incorporation of prior knowledge about the computer isting GP models, thus simplifying the creation of new GP
vision task (e.g., modeling object structure). Finallythe models for different computer vision tasks.
GP framework, the kernel hyperparameters can be learned In this paper, we proposeumifying frameworkhat en-
by maximizing the marginal likelihood, or evidence, of the compasses many existing GP models (e.g., regression, clas-
training data. This is typically more efficient than startlar  sification, and counting), which we calggneralized Gaus-
cross-validation (which requires a grid search), and alow sian process mod¢GGPM). In the GGPM framework, the
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observation likelihood of the GP model is itself parameter- tion task itself can be approximated as a @gression

ized. Hence, existing GP models are simply instances ofproblem, where the observations are sefte {—1,+1}.

the GGPM with certain parameters. By deriving approx- This is a computationally efficient alternative callkzdbel

imate inference for the generalized likelihood function of regressior(or least-square classificatigim [1,22], and has

the GGPM, we are able to apply the same algorithm (which shown promising results in object recognition [2].

was previously derived for one model) to all other GP mod-  GPR has been extended in several ways for different re-

els. Within the framework, novel GP models are created gression tasks. [26] proposes GP ordinal regression (i.e.,

by simply changing the likelihood function through its pa- ranking) using a multi-probit likelihood, while multiclas

rameterization.This greatly eases the creation of new GP classification is obtained using a probit [27] or softmax][24

models for task-specific output domains sigmoid function. Replacing the Gaussian observation like
The contributions of this paper are 3-fold: 1) we propose lihood with the Laplace or Cauchy likelihood leads to ro-

a generalized Gaussian process model (GGPM) based ofust GP regression [28], while [8,29, 30] develop counting

the single-parameter exponential family distributione-cr ~ regression using a Poisson observation likelihood and a GP

ating a principled regression framework that can be easily prior. The goal of this paper is to generalize many of these

adapted to specific output domains; 2) we derive a novelmodels into a unified framework, thus allowing approxi-

efficient approximate inference algorithm for GGPM based mate inference algorithms derived for each specific model

on a Taylor approximation, and show interesting connec- to be applied to the other models.

tIOHS.tO model-specmc closed-form approximations from 3. Generalized Gaussian process models

[2, 8]; 3) using the GGPM framework, we create several

newGP models and demonstrate their efficacy on several N this section, we introduce the generalized Gaus-

computer vision tasks. The remainder of the paper is or-Sian process model, a non-parametric Bayesian regression

ganized as follows. In Section 2, we first discuss related Model that encompasses many existing GP models.

work. In Segtions 3 and 4, we i.ntroduce_ t_he GGPM f.rame- 3.1. Exponential family distributions

work, while in Section 5 we derive an efficient approximate

inference algorithm. Finally, in Section 6, we present sev-  We first note that different GP models are obtained by

eral examples and experiments using GGPM. changing the form of the observation likelihop(@| /). The
standard GPR assumes a Gaussian observation likelihood,
2. Related work while GPC is obtained with a Bernoulli distribution, and [8]

uses a Poisson likelihood for counting. These likelihood
functions are all instances of the single-paramexgonen-
tial family distribution[31], with likelihood given by

Gaussian process regression (GPR) [1] is a Bayesian ap
proach to predicting a real-valued functigifix) of an in-
put vectorx € R? (also known as the regressor or ex-
planatory variable). The function value is observed thioug 1
a noisy observation (or measurement or outputy R, p(yl0,¢) = h(y, ) exp {@ [y6 — b(e)]} (@
with zero-mean additive Gaussian noise, i.e(y|f) = _ _ ]
N (y|f,02), whereo? is the observation noise. A zero- wherey € ) is the observation from set of possible val-

mean Gaussian procesgrior is placed on the function, ues) (e.g., real numbers, counting numbers, binary class
f ~ GP(0,k(x,x')), wherek(x,x') is the covariance labels). ¢ is the natural parameter of the exponential fam-
function that specifies the class of functions thfawill ily distribution, andy is the dispersion parameter(¢) and
model (e.g., linear, polynomial, etc). GPR inference can "(y,¢) are known functions, and(¢) is the log-partition

be computed in closed-form, due to the conjugacy betweenfUnction, which normalizes the distribution. The mean and
the Gaussian observation likelihood and Gaussian prior. ~ Variance ofy are functions ob(6) anda(¢),

_For Gaus_sian process classificatipn (GPQ) [1., 22],a GP p=Ely =b'(0), var(y) =0b"(0)a(e), 2)
prior is again placed on the functiofi, which is then _ o
“squashed” through a sigmoid function to obtain the prob- Wheret'(#) andb”(0) are the first and second derivatives of
ability of the classy € {0,1}, i.e., p(y = 1|f(x)) = bw.r.t. 0. The exponential family distribution generalizes
o(f(x)), whereo(f) is the logistic or probit sigmoid awide variety ofdistributio_ns_fordiﬁerent output domsin
functions. However, since the observation likelihood is Which suggests that a unifying framework can be created
no longer Gaussian, inference is no longer analytically by analyzing a GP model where the likelihood takes the
tractable. This has led to the development of several ap-generic formof (1).
proximate inference algorithms for GPC, such as Markov-
chain Monte Carlo (MCMC) [22], variational bounds [23],
Laplace’s method [24], and expectation propagation [1,25]  We now consider a framework for a generic Bayesian
As an alternative to approximate inference, the classifica-model that regresses from inputsc R to outputsy € ),

3.2. Generalized Gaussian process models
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which encompasses many popular GP models. The mode(latent function). Other Bayesian GLMs have also been

is composed of three components: proposed in the literature. These mainly focus on inducing
1. alatent functionp(x) ~ GP(0, k(x,x’)), whichisa  sparsity in the latent function, e.qg., [33, 34] assumes a fac
function of the inputs, modeled with a GP prior. torial heavy-tailed prior distribution, but is not kerregble

2. arandom component(y|d, ), that models the output  due to the factorial assumption. [35] proposes a Bayesian
as an exponential family distribution with parametgr ~ kernelized GLM, using a hierarchical model with a sparse
3. alink function,n = g(p), that relates theneanof the prior (a mixture of point mass and Silverman’s g-prior). The

output distribution with the latent function. GGPM can also be seen as a Bayesian versiongefreer-
Formally, the GGPM is specified by alised kernel maching86], which is based on kernelizing
iterated-reweighted least squares estimation (IRWLS).
n(x) ~ GP(0,k(x,x")), y~ p(yld,d), 3) While the connection between GPR/GPC and GLMs
g(E[y|0]) = n(x), (4) has been mentioned in the literature (e.g., [37, 38]), to our

knowledge, a unified GP framewoHas not been studied
wherek(x, x’) is the covariance (or kernel) function, which in depth In particular, there are no inference algorithms
defines the distribution over possible functions. The meanfor the general formof the exponential family distribu-
of the output distribution is related to the latent func- tion (there are only inference algorithms deriveddpecific
tion 7n(x), through the inverse-link function, i.e.u = likelihood functions). The goal of this paper is to paramete
g~ 1(n(x)). The advantage with using a link function is that ize the likelihood function, thus creating a “plug-andygla
it allows us todirectly specify prior knowledgabout the aspect to GP models. We exploit this property later to create
relationship (trend) between the output mean and the latentseveral novel GP models with very little extra work.
functionn(x). On the other hand, the effect of the GP ker- .
nel functi(gn)is to adaptively warp (or completely override) 4. Inference and Learning for GGPMs
the link function to fit the data. While many trends can be  Inference on GGPMs is similar to that of the standard
respresented by the GP kernel function (e.g., polynomial GPR/GPC [1] . Given a set of training examples, input vec-

functions), it is important to note that some functions (e.g torsX = [xy,--- ,x,] and corresponding observatigns-=
log(z)) cannot be naturally represented by a kernel func- [y1,--- ,yn]”, the goal is to generatemedictive distribu-
tion, due to its positive-definite constraint. Hence, directly tion of the outputy.. corresponding to a novelinpst . The
specifying the link function is necessary for these cases.  distribution of the latent valueg = [n(x1), -, n(x,)]",
Substituting (2) for the mean, we have corresponding to the training inpuls, is jointly Gaussian,
n|X ~ N (0,K), whereK is the kernel matrix with entries
n(x) = g(Ely[0]) = g(b'(0)) (5) k(x;,x;). Including the training outputg, the posterior

distribution ofn is obtained with Bayes' rule,

p(y10(n))p(n|X)
6(n(x)) = [~ (97" (n(x)). (6) pmXy) === Xy ©)

The model is simplified when(:) is selected to be the  wherep(y|X) is the marginal likelihood, or evidence,
canonical link function such thatd(n(x)) = n(x), i.e.

g(-) = [b']71(:). Using (6), another form of GGPM is

n(x) ~ GP(0,k(x,x")), y~pylo(n(x)),o), (7)
0(n(x)) = [0~ (g~ (n(x)))- (8)

Given a set of training examples and a novel input, t
predictive distribution is obtained by marginalizing over
the posterior of the latent function(x), as with standard :
GPR/GPC [1]. The dispersiapis treated as a hyperparam-  p(1:|X, x.,y) = /p(mm,X,X*)p(mX,)’)dn, (11)
eter, which can be estimated along with the kernel hyperpa-
rameters by maximizing the marginal likelihood. andp(n.|n, X, x.) = N (. [kKTK'n, k. — KTK 'k,
3.3. Other related work with k.. = [k(x., x;)]; andk.. = k(x.,x.). Finally, the
ys predictive distribution is obtained by marginalizing,
The GGPM can be interpreted as a Bayesian approach to

ggneral_lzed linear m_odeKQLMs) [32], where a GP prior Py X, x4, y) = /p(y*|9(77*))p(77*|xvX*vY)dﬂ*- (12)
with a linear kernel is placed on the systemic component

and thus, the parametefs a function of the latent function,

p(yX) = /p(ylﬁ'(n))p(an)dn- (10)

Given a novel inputx,, the posterior distribution of the

novel latent value). = 7(x.) is obtained by marginalizing
he over the posterior distribution in (9) (i.e., averaging oak
possible latent functions),
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4.1. Approximate inference 5.1. Taylor approximation

For most non-Gaussian likelihoods, the posterior and In this section, we derive a novel closed-form approx-
predictive distributions in (9, 10, 11, 12) cannot be com- imation to inference based on a Taylor approximation of
puted analytically in closed-form. Hence, approximate the likelihood term. We first define the following derivative

inference algorithms are required. One choice is to usefunctions of the observation log-likelihood,

MCMC to draw samples from the posteripin|X,y),

which can be computationally intensive [22]. Other infer- ,,
ence approximations work by finding a suitable Gaussian

approximationy(n|X, y) to the true posterior [22], i.e.

p(MIX,y) ~ q(n|X,y) = N(nm, V)  (13)

where the parametefsn, \7} are determined by the type of

approximation. Substituting the approximatigm|X,y)
into (11), the approximate posterior for is

P X, %0, y) = g0 X, ysry) = N (.

where the mean and variance are

an 77) (14)

fiy = kK ', (15)
62 =k — k(K=K 'VK ' )k,.  (16)

In many inference approximationan, \7} take the form

(n,y) = a% logp(y|0(n)) = @9’(77) [y —b'(0(n))]

2 —1

W) = = |z logp(ulon) (19
= a(9) {18 (n)? ~ [y~ ¥ (00n))] " ()}

For the canonical link function, these simplify to

(@)
v 0

u(n,y) = @[y —V()], winy) =

5.1.1 Joint approximation
The joint likelihood of the data and latent values is

) +logp(n|X).  (21)

Next we form a second-order Taylor expansion of the data

log p(y,n|X) = logp(y|0(n)

. . log-likelihood term at the poing;,
V=K'!'+WH ™l m=VWlt (17)
1

(@) [yiO(n;) — b

—

whereW is a positive definite diagonal matrix, atds a log p(yi|0(n:)) = 0(n:))] + log h(yi, ¢)

target vector. In these cases, (15) and (16) can be rewritten

1
~ log p(yi|0(7)) + @i(ni — ) — =y " (n; — 1:)* (22)

fig =k (K+ W)™t 62 = ko — kI (K + W) 'k, 2
Note that these are equivalent to the standard equations folVnere @i = “(77“ yi) andw; = w(i;,y;).  Defining
GPR, but withW andt determined by the approximate in- 8 = [, @n]" andW = diag(iy, ..., W), the joint

ference algorithm. likelihood in (21) can be approximated as

4.2. Learning the Hyperparameters - 1 n

g YPEp logg(y, n|X) = logp(y|0(1)) — 7 log |K| — 5 log 27
As in GPR, the kernel hyperparametarand the disper- 1 5 1 (23)
sion¢, are estimated from the data using Type-ll maximum — — = Hn - A*1V~V*1EH — = HtHW+K + -a'wWa
likelihood, which maximizes the marginal likelihood [1], 2 At 2 2

whereA = W-! + K1 t = 7+ W is the target vector,

{a*, 9"} = argn;ax/p(yln, P)p(n|X, a)dn,  (18) and the individual targets afe = 7; + w(7;, ys )u (7, yi)-

5.1.2 Approximate posterior
where we now note the dependence on the hyperparameters.
The marginal likelihood measures the data fit, averaged over-rom (23) , the posterior of is approximately Gaussian,
all probable latent functions. Hence, the criteria selduots 1 )
kernel hyperparameters such that each probable latent func logq(n|X,y) < —= Hn - A‘1W_1tH (24)
tion will model the data well. 2 At

= Q(n|XaY) :N(n|mav)a (25)

5. Approximate inference for GGPMs
In this section, we derive approximate inference algo- where,V = (W~! + K~1)~%, andm = VWflf. These
rithms for GGPMs based on tlgeneral formof the expo- are ofthe formin (17), and hence, the approximate posterior

nential family distribution in (1), i.e., using the liketiod of 7, has parameters
parameterga(o), b(0), h(y, ¢),0(n)}. We refer the reader

~ T xX7\—17 22 T x7\—1
to the supplemental [39] for derivations. fin =k, (K+W)7t, 65 = ko — k, (K+ W)™ k..
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The Taylor approximation is a closed-form (non-iterative) where{m, \7} are given by (17) witht = 1 andW = X,
approximation, that can be interpreted as performing GPRand Zzp = ¢(y|X) = [ ¢(y|0(n))p(n|X)dn is the EP ap-

on a set of targets with target-specific non-i.i.d. observa- proximation of the marginal likelihood. The parameters of
tion noiseW. The targets are a function of the the ex-  the site functions are iteratively optimized, which reesir
pansion poing, which can be chosen as a non-linear trans- computing moments (mean, variance, and normalization)
formation of the observations. One advantage with this  of q(n;) o p(yi|0(n:))N (s |p-i, 02;), where{pu—;, 02}
Taylor approximation is that it is aefficient non-iterative  are parameters of theavity distribution(more details in
method with the same complexity as GPR. Instances of the[1, 22]). Note that these moments may not be analytically
closed-form Taylor approximation for different GP models tractable (in factg(n;) is the same form as the predictive

are further explored in Section 6. distribution), so approximate integration is usually rieed.
5.1.3 Approximate Marginal 6. Examples and Experiments

The approximate marginal likelihood is obtained by inte- In this section, we present examples of both existing
grating outn in (23), yielding and novel GP models using GGPM. By simply changing

the parameters of the exponential family distribution to
log ¢(y|X) = 71ET(V~V TR llog ‘VV + K‘ +1r(d) form_a specific observation likelihood (i.e., se_lecting_the
2 2 functions{a(e), b(0), h(y, ¢),0(n)), we can easily obtain
B L aTrire 1 ~ ) a wide range of GP models with different types of outputs.
wherer(¢) = logp(y|0(n)) + 30 Wi+ 5 log [W]. This The GGPM was implemented in MATLAB by extending
marginal is similar to that of GPR, but with modified targets the GPML toolbox [1] to include implementations for: 1)
ahnddrp|se t(_arms. Thers is also an additional penalty term Mihe generic exponential family distribution using the para
the dispersion, given byr(¢). eters{a(),b(9), h(y,®),0(n)}; 2) the closed-form Tay-
5.2. Laplace approximation lor approximation for inference. EP moments and the pre-

The Laplace approximation is a Gaussian approximationc_”Ctive distributions are computed using numerical indéegr

of the posteriop(n|X, y) at its maximum (mode). Hence, tion. Empirically, we fo_und that EP was sensitive to the
the Laplace approximation is a special case of the closed-accuracy of the approximate integrals; there were conver-

form Taylor approximation in the previous section, where 9€Nce problems when other approximations were used (e.g.

the target is set to the maximum of the true posterior, Gaussian-Hermite quadrature). Hyperparameters (disper-
sion and kernel parameters) were optimized by maximizing

f) = argmaxlog p(n|X, y). (26) the marginal likelihood, using the existing GPML functions
n

6.1. Binomial distribution

The true posterior mode is obtained iteratively using the

Newton-Raphson method. The mode is unique when the

log posterior is concave, or equivalently wiéa—! is pos-

itive definite, i.e.

The binomial distribution models the probability of a
certain number of events occurringMindependent trials,
where the event probability in an individual trialis

a

L {600 () — [y — ¥ (6(m)] " ()} > 0 plylm N) = ()= -m* " (@7)

= b"(0(n)0' (n)* > [y — '(0(n))] " (n) wherey € {2, L ... N1is the fraction of events. With
0 = log =~ and¢ = +, th tial family f i
For a canonical link function, this simplifies #(n;) > 0, 0g 77 and¢ = . the exponential family form s
i.e., a unique maximum exists whéf) is convex.
quem s whéf) a(6) = 6, b(O) =log(1+¢"), h(y,0) = (). (28)
5.3. Expectation propagation
rithm for approximate inference, which has been shown . , o
to be effective for GPC [22]. EP approximates each like- m=Elyl=9""(n) =V(n) = 15 (29)
lihood term p(y;|0(n;)) with an unnormalized Gaussian
ti = ZiN (ni|fus,67) (also called a site function). The
posterior approximation is

and hence the mean is related to the latent space through
the logistic function. FotV = 1, the Binomial-GGPM is
equivalentto the GPC model using the logistic function. For

1 . N > 1, the model can naturally accommodate uncertainty
gnX,y) = =— Hti(m)p(mX) =N (n m, V) in the labels by using fractional, e.g., forN = 2 there are

ZBP 5 three levelsy € {0,1,1}. Furthermore, by changing the
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link function to the probit function, we obtain GPC using 6.1.2 Experiments

the probit likelihood, We use the binomial-GGPM to perform ordinal classifica-
g(p) = (), = g~ (1) = B(1) tion on the highway traffic dataset from [40]. The class la-

bels “low”, “medium”, and “high” traffic are assigned to

where ®(z) is the cumulative distribution of a Gaussian. the responses < {0, 3.1} of the binomial model. This

Substituting into the GGPM, we have p.rovidels a natural ranking of thg_classes, that is .not pos-
sible with normal 1-vs-all classification. Each video is
0(n) = log —2) . b(o — _log(l —® _ represented with a dynamic texture, and the kernel func-
() 8 T=e() (6Cn) 8 () tion is the exponentiated Martin distance [40]. The ex-
perimental results are presented in Table 1, and show that

o . ~ with an average error ¢£.0631 vs 0.0866. Figure 1 shows
We next look at the Taylor approximation for the binomial- the predicted class probabilities for each test video. kenli

GGPM. The derivative functions are standard 1-vs-all classifiers, the binomial-GGPM produces
) (Lt class probabilities that are correlated with the orderihg o
u(n,y) = N(y — ﬁﬁ), w(n,y) = “Far— the classes. The two GP models also outperform the nearest

neighbors and SVM classifiers from [40] (see Table 1).

Thus, the target and effective noise are 6.2. Poisson distribution

L (14e)? e  (14e)? The Poisson distribution is a model for counting data,
ti =" + P ( P T+emi )7 Wi = NeW: °
o o . pylA) = 1A%, (31)
An agnostic choice of expansion pointss = 0, which _ _
ignores the training classes, leading to wherey € Z; = {0, 1,--- } are counts, and is the arrival-
rate (mean) parameter. By settifig= log A and¢ = 1, we
t; =4(y; — 0.5), w; =4/N. (30) obtain the exponential family form with

0
Hence, the Taylor approximation for binomial-GGPM is a(9) =1, b(0) =", hly, @) = 1/y" (32)
equivalentto GPR in the latent space of the binomial model, The canonical link function is

with targetst; scaled betweef—2,+2] and an effective 1

noise termw; = 4/N. Wheikyi € ]{0, 1}, the target Ell =g () =e"=A g(p) =logp. (33
values are{—2, +2}, which is equivalent to label regres- Hence, the mean of the Poisson is the exponential of the
sion [1, 2,22] (up to a scaling). Hendabel regression can  latent value. The Poisson-GGPM is a Bayesian regression
be interpreted as a Taylor approximation to GPC inference! model for predicting countg from an input vectox, and

The scaling of the targets@ or +1) is irrelevantifwe only ~ has been previously studied in [8, 29, 30].

use the latent space, i.e. when classifying using the sign ofg 5 1 | inearized mean

y. However, this scaling is important if we want to compute

actual label probabilities using the predictive distribat The canonical link function assumes that the mean is the

exponential of the latent function. This may cause prob-
lems when this is not the case, as illustrated in Figure 2a,

Method Inference  Avg. Error ]

GPC (1-vs-all) EP 0.0866 where the count actually follows a linear trend. One way to
Binomial-GGPM Taylor ~ 0.0631 address this problem is to use a non-linear kernel function
g\e/i/:eg Neighbors - g'éggg (e.g. RBF) to try to counteract the exponential link funatio

However, there is no kernel function for the logarithm, and
hence errors occur at the extremes of the latent function.
Alternatively, the mean can bdirectly linearizedby
changing the link function of the Poisson-GGPM to be more
linear. For this purpose, we use the logistic error function

Table 1. Average error for traffic classification.
' highy

0.8}

o
o

probability

97 (n) =log(1 +€") = g(n) =log(e" —1), 1> 0.

For large values of;, the link function is linear, while for
negative values aof, the link approaches zero. The param-

o
~

o
N}

—

10 20

0

30 40 50 60

test video index (by class) eter function and new partition function are
Figure 1. Probabilities of traffic classes using binomial-GGPM. Test
videos are sorted by ground-truth class aitbw). 0(n) = log(log(1 +¢€")), b(0(n)) =log(1l+¢€"). (34)
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(b) (d)

nx)
nx)
ne)
nx)

y (count)
y (count)
y (count)

Figure 2.Examples of GGPM count regression models using differdwitiood functions: a) Poisson; b) Linearized Poisson; ©MEPoisson; d)
Linearized COM-Poisson. The data follows a linear trendianshderdispersed. The top row shows the latent functioméehin the latent space, while the
bottom row shows the predictive distributions. The backgcolor indicates the count probability (white most piabablack least probable)

Figures 2a and 2b illustrate the difference between the stan Note that,(0) is now also a function af (this only affects
dard and linearized Poisson GGPMs. The standard Poissoneptimization of the dispersion (details in [39])). For the
GGPM cannot correctly model the linear trend, resulting in canonical link function, we sék(n) = », and thus

a poor data fit at the extremes, while the linearized Poisson

follows the linear trend. Ely] ~ e + ﬁ - % =97 (n) = g(p) = log(p — ﬁ + %)'

6.2.2 Inference by Taylor approximation Alternatively the parameter function in (34) can be used to
Noting that = log(E[y]), a reasonable choice of expan- model allnea_r trend_ in the mean. The COM-Poisson GGPM
sion point isij; = log(y; + ¢), wherec > 0 is a constant to includes a dispersion hyperparameter that decouples the
prevent taking the logarithm of zero, and hence variance of the Poisson from the mean, thus allowing more
, . control on the observation noise of the output. Figures 2c
ti =log(yi +¢) — 755, wi = 50 (35)  and 2d show examples of using the COM-Poisson-GGPM
Forc = 0, the Taylor approximation is exactly the closed- ©ON underdispersed counting d_at_a Wi_th a linear trend. Note
form approximation proposed for Bayesian Poisson regres-that the variance of the prediction is much lower for the
sion in [8], which was derived in a different way using a COM-Poisson models than for the Poisson models (Figures
log-gamma approximation. 2a and 2b), thus illustrating that the COM-Poisson GGPM
can effectively estimate the dispersion of the data. A COM-
Poisson GLM (with canonical link) was proposed in [43],

One Iimitatiqn .with the Poisson dis_tributio_n is that it _and thus the COM-Poisson GGPM is a non-linear Bayesian
models an equidispersed random variable, i.e. the vari-gytension using a GP prior on the latent function.
ance is equal to the mean. However, in some cases,

the actual random variable twerdispersedwith variance 6.3.1 Counting experiments

greater than the mean) onderdispersewith variance less ~ We perform two counting experiments using GGPMs with
than the mean). An alternative distribution for count data, Poisson-based likelihoods. In all cases, predictions are
which represents different dispersion levels, is the Cgawa based on the mode of the distribution for GGPMs, and the

6.3. Conway-Maxwell-Poisson distribution

Maxwell-Poisson (COM-Poisson) distribution [41-43], rounded, truncated mean for GPR. In the first experiment,
o we perform crowd counting using the dataset from [7], and
p(ylp, v) = S(i,u) {Z_ﬂ . S(u,v) = Z {%} : results are presented in Table 2. In all cases the compound

linear-RBF kernel was used. On the “right” crowd, Poisson-

wherey ¢ 7 is (roughly) the mean parameter, ani GGPM performs the best (errdr264), followed by the
4 + 1 anly P ' linearized Poisson1(360). This is due to the large num-

the dispersion parameter. The COM-Poisson is a smooth in-

terpolation between three distributions: geometrie=( 0), gg;-cl)ifnpe)zcr)?g n:):]r; tiggr;:egaoglxci’h\év?::;lfeagsggea gr?rt?\e
Poisson ¢ = 1), and Bernoulli { — o). The distribution P pace.

. . . other hand, the results on the “left” crowd show that the

is overdispersed far < 1, and underdispersed for > 1. X . . ) . )

Settingd) = log 12 ande — v, we have linearized COM-P_0|s_son, _Ilne_arlz_ed P0|sson_, and stano_lard
' GPR all perform similarly, indicating a more linear trend in

a(g) = ¢ 1, by(0) = ¢ Llog S(ef, ¢), hly,d) = (y))~?. the data (due to smaller crowd sizes and fewer occlusions).

n=0
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Method Inference  MAE(R) MAE(L)

Gauss Exact 1.556 0.853
Poisson GGPM Taylor 1.264 1.035
Poisson GGPM Laplace 1.268 1.037
Poisson GGPM EP 1.272 1.035
Linearized Poisson GGPM  Taylor 1.363 0.880
Linearized Poisson GGPM Laplace 1.360 0.868
Linearized Poisson GGPM EP  1.367 0.868
COM-Poisson GGPM Taylor 1.432 1.053
COM-Poisson GGPM Laplace 1.352 1.082
COM-Poisson GGPM EP 1.429 1.048
Lin. COM-Poisson GGPM  Taylor  1.530 0.908
Lin. COM-Poisson GGPM  Laplace 1.523 0.839
Lin. COM-Poisson GGPM EP 1.579 0.862

Table 2. Mean absolute errors for crowd counting.

In the second experiment, the GGPM is used for age

El
[10]
[11]
[12]

(23]

[14]
[15]
[16]
[17]

estimation on the FG-NET dataset [44], where 150 facial [18]

features are extracted using active appearance models [45}19
Ourresults are presented in Table 3, indicating that the-Poi

son GGPM with linearized mean performs the best among[20!
the models, with an mean absolute error5a§24 versus
6.123 for standard GPR. Examples appear in Figure 3.

Method Inference MAE
GP Exact 6.123
Warped GP [4] Exact  6.111
Poisson GGPM Taylor  6.444
Linearized Poisson GGPM Taylor 5.975

Linearized Poisson GGPM Laplace 5.824

Table 3. Mean absolute error for age estimation on FG-NET.

Figure 3. Examples of predicted age distributions on FG-NET
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