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Abstract
We propose a generalized Gaussian process model

(GGPM), which is a unifying framework that encompasses
many existing Gaussian process (GP) models, such as GP
regression, classification, and counting. In the GGPM
framework, the observation likelihood of the GP model is
itself parameterized using the exponential family distribu-
tion. By deriving approximate inference algorithms for the
generalized GP model, we are able to easily apply the same
algorithm to all other GP models. Novel GP models are
created by changing the parameterization of the likelihood
function, which greatly simplifies their creation for task-
specific output domains. We also derive a closed-form ef-
ficient Taylor approximation for inference on the model,
and draw interesting connections with other model-specific
closed-form approximations. Finally, using the GGPM, we
create several new GP models and show their efficacy in
building task-specific GP models for computer vision.

1. Introduction

In recent years, Gaussian processes (GPs) [1], a non-
parametric Bayesian approach to regression and classifica-
tion, have been gaining popularity in computer vision. For
example, recent work [2] has demonstrated promising re-
sults on object classification using GP classification and ac-
tive learning. GPs have several properties that are desirable
for solving computer vision tasks. First, due to the Bayesian
formulation, GPs can be learned robustly from small train-
ing sets, which is important in tasks where the amount of
training data is sparse compared to the dimension of the
model (e.g., large-scale object recognition, tracking, 3dhu-
man pose modeling). Second, the GP regression produces
a predictive distribution, not just a single predicted value,
thus providing a probabilistic approach to judging confi-
dence in the predictions, e.g., for active learning. Third,
GPs are based on kernel functions between the input ex-
amples, which allows for both a diverse set of image rep-
resentations (e.g., bag-of-words, local-feature descriptors),
and incorporation of prior knowledge about the computer
vision task (e.g., modeling object structure). Finally, inthe
GP framework, the kernel hyperparameters can be learned
by maximizing the marginal likelihood, or evidence, of the
training data. This is typically more efficient than standard
cross-validation (which requires a grid search), and allows

for more expressive kernels, e.g., compound kernels that
model different trends in the data, or multiple kernel learn-
ing, where features are optimally combined by adjusting the
weights on each feature’s kernel function.

Because of these advantages, GP regression and classi-
fication have been applied to many computer vision prob-
lems, such as object classification [2], human action recog-
nition [3], age estimation [4], eye-gaze recognition [5],
tracking [6], counting people [7, 8], crowd flow modeling
[9], anomaly detection [10], stereo vision [11, 12], interpo-
lation of range data [13] non-rigid shape recovery [14], 3d
human pose recovery [15–18], and latent-space models of
3d human pose [19–21]. However, despite their successes,
many of these methods attempt to “shoe-horn” their com-
puter vision task into the standard GP regression frame-
work. In particular, while the standard GP regresses a con-
tinuousreal-valuedfunction, it is often used to predictdis-
cretenon-negative integers (crowd counts [7] or age [4]),
non-negative real numbers (disparity [11,12] or depth [13]),
real numbers on a fixed interval (pose angles [15–18] or
squashed optical flow [10]), and coordinate pairs (bound-
ing boxes [5]). Hence, heuristics are required to convert
the real-valued GP prediction to avalid task-specific output,
which is not optimal in the Bayesian setting. For example
in [7], the real-valued GP prediction must be truncated and
rounded to generate a proper count prediction, and it is not
obvious how the predictive distribution over real-values can
be converted to one over counts.

Currently, to develop a new GP model for each of the
above regression tasks requires first finding a suitable dis-
tribution for the output variable (e.g., Poisson distribution
for counting numbers, or a Gamma distribution for posi-
tive real values). Approximate inference is usually needed,
due to the lack of conjugacy between the GP prior and the
observation likelihood. As a result, developing a new GP
model typically requires lengthy derivations of approximate
inference for each particular likelihood function. What is
currently lacking is ageneralframework that unifies the ex-
isting GP models, thus simplifying the creation of new GP
models for different computer vision tasks.

In this paper, we propose aunifying frameworkthat en-
compasses many existing GP models (e.g., regression, clas-
sification, and counting), which we call ageneralized Gaus-
sian process model(GGPM). In the GGPM framework, the
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observation likelihood of the GP model is itself parameter-
ized. Hence, existing GP models are simply instances of
the GGPM with certain parameters. By deriving approx-
imate inference for the generalized likelihood function of
the GGPM, we are able to apply the same algorithm (which
was previously derived for one model) to all other GP mod-
els. Within the framework, novel GP models are created
by simply changing the likelihood function through its pa-
rameterization.This greatly eases the creation of new GP
models for task-specific output domains.

The contributions of this paper are 3-fold: 1) we propose
a generalized Gaussian process model (GGPM) based on
the single-parameter exponential family distribution, cre-
ating a principled regression framework that can be easily
adapted to specific output domains; 2) we derive a novel
efficient approximate inference algorithm for GGPM based
on a Taylor approximation, and show interesting connec-
tions to model-specific closed-form approximations from
[2, 8]; 3) using the GGPM framework, we create several
newGP models and demonstrate their efficacy on several
computer vision tasks. The remainder of the paper is or-
ganized as follows. In Section 2, we first discuss related
work. In Sections 3 and 4, we introduce the GGPM frame-
work, while in Section 5 we derive an efficient approximate
inference algorithm. Finally, in Section 6, we present sev-
eral examples and experiments using GGPM.

2. Related work
Gaussian process regression (GPR) [1] is a Bayesian ap-

proach to predicting a real-valued functionf(x) of an in-
put vectorx ∈ R

d (also known as the regressor or ex-
planatory variable). The function value is observed through
a noisy observation (or measurement or output)y ∈ R,
with zero-mean additive Gaussian noise, i.e.p(y|f) =
N

(

y
∣

∣f, σ2
n

)

, whereσ2
n is the observation noise. A zero-

meanGaussian processprior is placed on the function,
f ∼ GP(0, k(x,x′)), wherek(x,x′) is the covariance
function that specifies the class of functions thatf will
model (e.g., linear, polynomial, etc). GPR inference can
be computed in closed-form, due to the conjugacy between
the Gaussian observation likelihood and Gaussian prior.

For Gaussian process classification (GPC) [1, 22], a GP
prior is again placed on the functionf , which is then
“squashed” through a sigmoid function to obtain the prob-
ability of the classy ∈ {0, 1}, i.e., p(y = 1|f(x)) =
σ(f(x)), where σ(f) is the logistic or probit sigmoid
functions. However, since the observation likelihood is
no longer Gaussian, inference is no longer analytically
tractable. This has led to the development of several ap-
proximate inference algorithms for GPC, such as Markov-
chain Monte Carlo (MCMC) [22], variational bounds [23],
Laplace’s method [24], and expectation propagation [1,25].
As an alternative to approximate inference, the classifica-

tion task itself can be approximated as a GPregression
problem, where the observations are set toy ∈ {−1,+1}.
This is a computationally efficient alternative calledlabel
regression(or least-square classification) in [1,22], and has
shown promising results in object recognition [2].

GPR has been extended in several ways for different re-
gression tasks. [26] proposes GP ordinal regression (i.e.,
ranking) using a multi-probit likelihood, while multiclass
classification is obtained using a probit [27] or softmax [24]
sigmoid function. Replacing the Gaussian observation like-
lihood with the Laplace or Cauchy likelihood leads to ro-
bust GP regression [28], while [8, 29, 30] develop counting
regression using a Poisson observation likelihood and a GP
prior. The goal of this paper is to generalize many of these
models into a unified framework, thus allowing approxi-
mate inference algorithms derived for each specific model
to be applied to the other models.

3. Generalized Gaussian process models
In this section, we introduce the generalized Gaus-

sian process model, a non-parametric Bayesian regression
model that encompasses many existing GP models.

3.1. Exponential family distributions

We first note that different GP models are obtained by
changing the form of the observation likelihoodp(y|f). The
standard GPR assumes a Gaussian observation likelihood,
while GPC is obtained with a Bernoulli distribution, and [8]
uses a Poisson likelihood for counting. These likelihood
functions are all instances of the single-parameterexponen-
tial family distribution[31], with likelihood given by

p(y|θ, φ) = h(y, φ) exp

{

1

a(φ)
[yθ − b(θ)]

}

, (1)

wherey ∈ Y is the observation from set of possible val-
uesY (e.g., real numbers, counting numbers, binary class
labels). θ is the natural parameter of the exponential fam-
ily distribution, andφ is the dispersion parameter.a(φ) and
h(y, φ) are known functions, andb(θ) is the log-partition
function, which normalizes the distribution. The mean and
variance ofy are functions ofb(θ) anda(φ),

µ = E[y] = b′(θ), var(y) = b′′(θ)a(φ), (2)

whereb′(θ) andb′′(θ) are the first and second derivatives of
b w.r.t. θ. The exponential family distribution generalizes
a wide variety of distributions for different output domains,
which suggests that a unifying framework can be created
by analyzing a GP model where the likelihood takes the
generic formof (1).

3.2. Generalized Gaussian process models

We now consider a framework for a generic Bayesian
model that regresses from inputsx ∈ R

d to outputsy ∈ Y,
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which encompasses many popular GP models. The model
is composed of three components:

1. a latent function,η(x) ∼ GP(0, k(x,x′)), which is a
function of the inputs, modeled with a GP prior.

2. a random component,p(y|θ, φ), that models the output
as an exponential family distribution with parameterθ;

3. a link function,η = g(µ), that relates themeanof the
output distribution with the latent function.

Formally, the GGPM is specified by

η(x) ∼ GP(0, k(x,x′)), y ∼ p(y|θ, φ), (3)

g(E[y|θ]) = η(x), (4)

wherek(x,x′) is the covariance (or kernel) function, which
defines the distribution over possible functions. The mean
of the output distribution is related to the latent func-
tion η(x), through the inverse-link function, i.e.µ =
g−1(η(x)). The advantage with using a link function is that
it allows us todirectly specify prior knowledgeabout the
relationship (trend) between the output mean and the latent
functionη(x). On the other hand, the effect of the GP ker-
nel function is to adaptively warp (or completely override)
the link function to fit the data. While many trends can be
respresented by the GP kernel function (e.g., polynomial
functions), it is important to note that some functions (e.g.,
log(x)) cannot be naturally represented by a kernel func-
tion, due to its positive-definite constraint. Hence, directly
specifying the link function is necessary for these cases.

Substituting (2) for the mean, we have

η(x) = g(E[y|θ]) = g(b′(θ)) (5)

and thus, the parameterθ is a function of the latent function,

θ(η(x)) = [b′]−1(g−1(η(x))). (6)

The model is simplified wheng(·) is selected to be the
canonical link function, such thatθ(η(x)) = η(x), i.e.
g(·) = [b′]−1(·). Using (6), another form of GGPM is

η(x) ∼ GP(0, k(x,x′)), y ∼ p(y|θ(η(x)), φ), (7)

θ(η(x)) = [b′]−1(g−1(η(x))). (8)

Given a set of training examples and a novel input, the
predictive distribution is obtained by marginalizing over
the posterior of the latent functionη(x), as with standard
GPR/GPC [1]. The dispersionφ is treated as a hyperparam-
eter, which can be estimated along with the kernel hyperpa-
rameters by maximizing the marginal likelihood.

3.3. Other related work

The GGPM can be interpreted as a Bayesian approach to
generalized linear models(GLMs) [32], where a GP prior
with a linear kernel is placed on the systemic component

(latent function). Other Bayesian GLMs have also been
proposed in the literature. These mainly focus on inducing
sparsity in the latent function, e.g., [33, 34] assumes a fac-
torial heavy-tailed prior distribution, but is not kernelizable
due to the factorial assumption. [35] proposes a Bayesian
kernelized GLM, using a hierarchical model with a sparse
prior (a mixture of point mass and Silverman’s g-prior). The
GGPM can also be seen as a Bayesian version of agener-
alised kernel machines[36], which is based on kernelizing
iterated-reweighted least squares estimation (IRWLS).

While the connection between GPR/GPC and GLMs
has been mentioned in the literature (e.g., [37, 38]), to our
knowledge, a unified GP frameworkhas not been studied
in depth. In particular, there are no inference algorithms
for the general formof the exponential family distribu-
tion (there are only inference algorithms derived forspecific
likelihood functions). The goal of this paper is to parameter-
ize the likelihood function, thus creating a “plug-and-play”
aspect to GP models. We exploit this property later to create
several novel GP models with very little extra work.

4. Inference and Learning for GGPMs
Inference on GGPMs is similar to that of the standard

GPR/GPC [1] . Given a set of training examples, input vec-
torsX = [x1, · · · ,xn] and corresponding observationsy =
[y1, · · · , yn]T , the goal is to generate apredictive distribu-
tion of the outputy∗ corresponding to a novel inputx∗ . The
distribution of the latent valuesη = [η(x1), · · · , η(xn)]

T ,
corresponding to the training inputsX, is jointly Gaussian,
η|X ∼ N (0,K), whereK is the kernel matrix with entries
k(xi,xj). Including the training outputsy, the posterior
distribution ofη is obtained with Bayes’ rule,

p(η|X,y) =
p(y|θ(η))p(η|X)

p(y|X)
, (9)

wherep(y|X) is the marginal likelihood, or evidence,

p(y|X) =

∫

p(y|θ(η))p(η|X)dη. (10)

Given a novel inputx∗, the posterior distribution of the
novel latent valueη∗ = η(x∗) is obtained by marginalizing
over the posterior distribution in (9) (i.e., averaging over all
possible latent functions),

p(η∗|X,x∗,y) =

∫

p(η∗|η,X,x∗)p(η|X,y)dη, (11)

andp(η∗|η,X,x∗) = N
(

η∗
∣

∣kT
∗
K−1η, k∗∗ − kT

∗
K−1k∗

)

,
with k∗ = [k(x∗,xi)]i andk∗∗ = k(x∗,x∗). Finally, the
y∗ predictive distribution is obtained by marginalizingη∗,

p(y∗|X,x∗,y) =

∫

p(y∗|θ(η∗))p(η∗|X,x∗,y)dη∗. (12)

2683



4.1. Approximate inference

For most non-Gaussian likelihoods, the posterior and
predictive distributions in (9, 10, 11, 12) cannot be com-
puted analytically in closed-form. Hence, approximate
inference algorithms are required. One choice is to use
MCMC to draw samples from the posteriorp(η|X,y),
which can be computationally intensive [22]. Other infer-
ence approximations work by finding a suitable Gaussian
approximationq(η|X,y) to the true posterior [22], i.e.

p(η|X,y) ≈ q(η|X,y) = N (η|m̂, V̂) (13)

where the parameters{m̂, V̂} are determined by the type of
approximation. Substituting the approximationq(η|X,y)
into (11), the approximate posterior forη∗ is

p(η∗|X,x∗,y) ≈ q(η∗|X,y∗,y) = N
(

η∗
∣

∣µ̂η, σ̂
2
η

)

, (14)

where the mean and variance are

µ̂η = kT
∗
K−1m̂, (15)

σ̂2
η = k∗∗ − kT

∗
(K−1 −K−1V̂K−1)k∗. (16)

In many inference approximations,{m̂, V̂} take the form

V̂ = (K−1 +W−1)−1, m̂ = V̂W−1t, (17)

whereW is a positive definite diagonal matrix, andt is a
target vector. In these cases, (15) and (16) can be rewritten

µ̂η = kT
∗
(K+W)−1

t, σ̂2
η = k∗∗ − kT

∗
(K+W)−1k∗.

Note that these are equivalent to the standard equations for
GPR, but withW andt determined by the approximate in-
ference algorithm.

4.2. Learning the Hyperparameters

As in GPR, the kernel hyperparametersα and the disper-
sionφ, are estimated from the data using Type-II maximum
likelihood, which maximizes the marginal likelihood [1],

{α∗, φ∗} = argmax
α,φ

∫

p(y|η, φ)p(η|X,α)dη, (18)

where we now note the dependence on the hyperparameters.
The marginal likelihood measures the data fit, averaged over
all probable latent functions. Hence, the criteria selectsthe
kernel hyperparameters such that each probable latent func-
tion will model the data well.

5. Approximate inference for GGPMs
In this section, we derive approximate inference algo-

rithms for GGPMs based on thegeneral formof the expo-
nential family distribution in (1), i.e., using the likelihood
parameters{a(φ), b(θ), h(y, φ), θ(η)}. We refer the reader
to the supplemental [39] for derivations.

5.1. Taylor approximation

In this section, we derive a novel closed-form approx-
imation to inference based on a Taylor approximation of
the likelihood term. We first define the following derivative
functions of the observation log-likelihood,

u(η, y) =
∂

∂η
log p(y|θ(η)) =

1

a(φ)
θ′(η) [y − b′(θ(η))] ,

w(η, y) = −

[

∂2

∂η2
log p(y|θ(η))

]−1

(19)

= a(φ)
{

b′′(θ(η))θ′(η)2 − [y − b′(θ(η))] θ′′(η)
}−1

For the canonical link function, these simplify to

u(η, y) =
1

a(φ)
[y − b′(η)], w(η, y) =

a(φ)

b′′(η)
. (20)

5.1.1 Joint approximation

The joint likelihood of the data and latent values is

log p(y,η|X) = log p(y|θ(η)) + log p(η|X). (21)

Next we form a second-order Taylor expansion of the data
log-likelihood term at the point̃ηi,

log p(yi|θ(ηi)) =
1

a(φ)
[yiθ(ηi)− b(θ(ηi))] + log h(yi, φ)

≈ log p(yi|θ(η̃i)) + ũi(ηi − η̃i)−
1

2
w̃−1

i (ηi − η̃i)
2 (22)

where ũi = u(η̃i, yi) and w̃i = w(η̃i, yi). Defining
ũ = [ũ1, · · · , ũn]

T andW̃ = diag(w̃1, . . . , w̃n), the joint
likelihood in (21) can be approximated as

log q(y,η|X) = log p(y|θ(η̃))−
1

2
log |K| −

n

2
log 2π

−
1

2

∥

∥

∥
η −A−1W̃−1t̃

∥

∥

∥

2

A−1

−
1

2

∥

∥t̃
∥

∥

2

W+K
+

1

2
ũTW̃ũ

(23)

whereA = W̃−1+K−1, t̃ = η̃+W̃ũ is the target vector,
and the individual targets arẽti = η̃i + w(η̃i, yi)u(η̃i, yi).

5.1.2 Approximate posterior

From (23) , the posterior ofη is approximately Gaussian,

log q(η|X,y) ∝ −
1

2

∥

∥

∥
η −A−1W̃−1t

∥

∥

∥

2

A−1

(24)

⇒ q(η|X,y) = N (η|m̂, V̂), (25)

where,V̂ = (W̃−1 +K−1)−1, andm̂ = V̂W̃−1t̃. These
are of the form in (17), and hence, the approximate posterior
of η∗ has parameters

µ̂η = kT
∗
(K+ W̃)−1t̃, σ̂2

θ = k∗∗ − kT
∗
(K+ W̃)−1k∗.
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The Taylor approximation is a closed-form (non-iterative)
approximation, that can be interpreted as performing GPR
on a set of targets̃t with target-specific non-i.i.d. observa-
tion noiseW̃. The targets̃t are a function of the the ex-
pansion point̃η, which can be chosen as a non-linear trans-
formation of the observationsy. One advantage with this
Taylor approximation is that it is anefficient non-iterative
method with the same complexity as GPR. Instances of the
closed-form Taylor approximation for different GP models
are further explored in Section 6.

5.1.3 Approximate Marginal

The approximate marginal likelihood is obtained by inte-
grating outη in (23), yielding

log q(y|X) = −
1

2
t̃T (W̃ +K)−1t̃−

1

2
log

∣

∣

∣
W̃ +K

∣

∣

∣
+ r(φ)

wherer(φ) = log p(y|θ(η̃))+ 1
2 ũ

TW̃ũ+ 1
2 log |W̃|. This

marginal is similar to that of GPR, but with modified targets
and noise terms. There is also an additional penalty term on
the dispersionφ, given byr(φ).

5.2. Laplace approximation
The Laplace approximation is a Gaussian approximation

of the posteriorp(η|X,y) at its maximum (mode). Hence,
the Laplace approximation is a special case of the closed-
form Taylor approximation in the previous section, where
the target̃t is set to the maximum of the true posterior,

η̂ = argmax
η

log p(η|X,y). (26)

The true posterior mode is obtained iteratively using the
Newton-Raphson method. The mode is unique when the
log posterior is concave, or equivalently whenW−1 is pos-
itive definite, i.e.

1
a(φ)

{

b′′(θ(η))θ′(η)2 − [y − b′(θ(η))] θ′′(η)
}

> 0

⇒ b′′(θ(η))θ′(η)2 > [y − b′(θ(η))] θ′′(η)

For a canonical link function, this simplifies tob′′(ηi) > 0,
i.e., a unique maximum exists whenb(η) is convex.

5.3. Expectation propagation
Expectation propagation (EP) [25] is a general algo-

rithm for approximate inference, which has been shown
to be effective for GPC [22]. EP approximates each like-
lihood term p(yi|θ(ηi)) with an unnormalized Gaussian
ti = Z̃iN

(

ηi
∣

∣µ̃i, σ̃
2
i

)

(also called a site function). The
posterior approximation is

q(η|X,y) =
1

ZEP

n
∏

i=1

ti(ηi)p(η|X) = N
(

η

∣

∣

∣
m̂, V̂

)

where{m̂, V̂} are given by (17) witht = µ̃ andW = Σ̃,
andZEP = q(y|X) =

∫

q(y|θ(η))p(η|X)dη is the EP ap-
proximation of the marginal likelihood. The parameters of
the site functions are iteratively optimized, which requires
computing moments (mean, variance, and normalization)
of q(ηi) ∝ p(yi|θ(ηi))N

(

ηi
∣

∣µ¬i, σ
2
¬i

)

, where{µ¬i, σ
2
¬i}

are parameters of thecavity distribution(more details in
[1, 22]). Note that these moments may not be analytically
tractable (in fact,q(ηi) is the same form as the predictive
distribution), so approximate integration is usually required.

6. Examples and Experiments
In this section, we present examples of both existing

and novel GP models using GGPM. By simply changing
the parameters of the exponential family distribution to
form a specific observation likelihood (i.e., selecting the
functions{a(φ), b(θ), h(y, φ), θ(η)), we can easily obtain
a wide range of GP models with different types of outputs.

The GGPM was implemented in MATLAB by extending
the GPML toolbox [1] to include implementations for: 1)
the generic exponential family distribution using the param-
eters{a(φ), b(θ), h(y, φ), θ(η)}; 2) the closed-form Tay-
lor approximation for inference. EP moments and the pre-
dictive distributions are computed using numerical integra-
tion. Empirically, we found that EP was sensitive to the
accuracy of the approximate integrals; there were conver-
gence problems when other approximations were used (e.g.
Gaussian-Hermite quadrature). Hyperparameters (disper-
sion and kernel parameters) were optimized by maximizing
the marginal likelihood, using the existing GPML functions.

6.1. Binomial distribution

The binomial distribution models the probability of a
certain number of events occurring inN independent trials,
where the event probability in an individual trial isπ,

p(y|π,N) =
(

N
Ny

)

πNy(1− π)N−Ny (27)

wherey ∈ { 0
N
, 1
N
, · · · , N

N
} is the fraction of events. With

θ = log π
1−π

andφ = 1
N

, the exponential family form is

a(φ) = φ, b(θ) = log(1 + eθ), h(y, φ) =
(

N
Ny

)

. (28)

If we assume the canonical link function, then

π = E[y] = g−1(η) = b′(η) = eη

1+eη
, (29)

and hence the mean is related to the latent space through
the logistic function. ForN = 1, the Binomial-GGPM is
equivalent to the GPC model using the logistic function. For
N > 1, the model can naturally accommodate uncertainty
in the labels by using fractionalyi, e.g., forN = 2 there are
three levelsy ∈ {0, 12 , 1}. Furthermore, by changing the
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link function to the probit function, we obtain GPC using
the probit likelihood,

g(µ) = Φ−1(µ),⇒ g−1(η) = Φ(η)

whereΦ(η) is the cumulative distribution of a Gaussian.
Substituting into the GGPM, we have

θ(η) = log Φ(η)
1−Φ(η) , b(θ(η)) = − log(1− Φ(η)).

6.1.1 Inference by Taylor approximation

We next look at the Taylor approximation for the binomial-
GGPM. The derivative functions are

u(η, y) = N(y − eη

1+eη
), w(η, y) = (1+eη)2

Neη
.

Thus, the target and effective noise are

ti = η̃i +
(1+eη̃i )2

eη̃i
(yi −

eη̃i

1+eη̃i
), wi =

(1+eη̃i )2

Neη̃i
.

An agnostic choice of expansion point is̃ηi = 0, which
ignores the training classes, leading to

ti = 4(yi − 0.5), wi = 4/N. (30)

Hence, the Taylor approximation for binomial-GGPM is
equivalent to GPR in the latent space of the binomial model,
with targetsti scaled between[−2,+2] and an effective
noise termwi = 4/N . When yi ∈ {0, 1}, the target
values are{−2,+2}, which is equivalent to label regres-
sion [1,2,22] (up to a scaling). Hence,label regression can
be interpreted as a Taylor approximation to GPC inference!
The scaling of the targets (±2 or±1) is irrelevant if we only
use the latent space, i.e. when classifying using the sign of
y. However, this scaling is important if we want to compute
actual label probabilities using the predictive distribution.

Method Inference Avg. Error
GPC (1-vs-all) EP 0.0866
Binomial-GGPM Taylor 0.0631

Nearest Neighbors – 0.1260
SVM – 0.0905

Table 1. Average error for traffic classification.
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Figure 1. Probabilities of traffic classes using binomial-GGPM. Test
videos are sorted by ground-truth class andp(low).

6.1.2 Experiments

We use the binomial-GGPM to perform ordinal classifica-
tion on the highway traffic dataset from [40]. The class la-
bels “low”, “medium”, and “high” traffic are assigned to
the responsesy ∈ {0, 12 , 1} of the binomial model. This
provides a natural ranking of the classes, that is not pos-
sible with normal 1-vs-all classification. Each video is
represented with a dynamic texture, and the kernel func-
tion is the exponentiated Martin distance [40]. The ex-
perimental results are presented in Table 1, and show that
binomial-GGPM outperforms the standard 1-vs-all GPC,
with an average error of0.0631 vs 0.0866. Figure 1 shows
the predicted class probabilities for each test video. Unlike
standard 1-vs-all classifiers, the binomial-GGPM produces
class probabilities that are correlated with the ordering of
the classes. The two GP models also outperform the nearest
neighbors and SVM classifiers from [40] (see Table 1).

6.2. Poisson distribution
The Poisson distribution is a model for counting data,

p(y|λ) = 1
y!λ

ye−λ, (31)

wherey ∈ Z+ = {0, 1, · · · } are counts, andλ is the arrival-
rate (mean) parameter. By settingθ = logλ andφ = 1, we
obtain the exponential family form with

a(φ) = 1, b(θ) = eθ, h(y, φ) = 1/y!. (32)

The canonical link function is

E[y] = g−1(η) = eη = λ, g(µ) = logµ. (33)

Hence, the mean of the Poisson is the exponential of the
latent value. The Poisson-GGPM is a Bayesian regression
model for predicting countsy from an input vectorx, and
has been previously studied in [8,29,30].

6.2.1 Linearized mean

The canonical link function assumes that the mean is the
exponential of the latent function. This may cause prob-
lems when this is not the case, as illustrated in Figure 2a,
where the count actually follows a linear trend. One way to
address this problem is to use a non-linear kernel function
(e.g. RBF) to try to counteract the exponential link function.
However, there is no kernel function for the logarithm, and
hence errors occur at the extremes of the latent function.

Alternatively, the mean can bedirectly linearizedby
changing the link function of the Poisson-GGPM to be more
linear. For this purpose, we use the logistic error function,

g−1(η) = log(1 + eη) ⇒ g(µ) = log(eµ − 1), µ > 0.

For large values ofη, the link function is linear, while for
negative values ofη, the link approaches zero. The param-
eter function and new partition function are

θ(η) = log(log(1 + eη)), b(θ(η)) = log(1 + eη). (34)
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Figure 2.Examples of GGPM count regression models using different likelihood functions: a) Poisson; b) Linearized Poisson; c) COM-Poisson; d)
Linearized COM-Poisson. The data follows a linear trend andis underdispersed. The top row shows the latent function learned in the latent space, while the
bottom row shows the predictive distributions. The background color indicates the count probability (white most probable, black least probable)

Figures 2a and 2b illustrate the difference between the stan-
dard and linearized Poisson GGPMs. The standard Poisson-
GGPM cannot correctly model the linear trend, resulting in
a poor data fit at the extremes, while the linearized Poisson
follows the linear trend.

6.2.2 Inference by Taylor approximation

Noting thatη = log(E[y]), a reasonable choice of expan-
sion point isη̃i = log(yi + c), wherec ≥ 0 is a constant to
prevent taking the logarithm of zero, and hence

ti = log(yi + c)− c
yi+c

, wi =
1

yi+c
. (35)

For c = 0, the Taylor approximation is exactly the closed-
form approximation proposed for Bayesian Poisson regres-
sion in [8], which was derived in a different way using a
log-gamma approximation.

6.3. Conway-Maxwell-Poisson distribution
One limitation with the Poisson distribution is that it

models an equidispersed random variable, i.e. the vari-
ance is equal to the mean. However, in some cases,
the actual random variable isoverdispersed(with variance
greater than the mean) orunderdispersed(with variance less
than the mean). An alternative distribution for count data,
which represents different dispersion levels, is the Conway-
Maxwell-Poisson (COM-Poisson) distribution [41–43],

p(y|µ, ν) = 1
S(µ,ν)

[

µy

y!

]ν

, S(µ, ν) =

∞
∑

n=0

[

µn

n!

]ν

,

wherey ∈ Z+, µ is (roughly) the mean parameter, andν is
the dispersion parameter. The COM-Poisson is a smooth in-
terpolation between three distributions: geometric (ν = 0),
Poisson (ν = 1), and Bernoulli (ν → ∞). The distribution
is overdispersed forν < 1, and underdispersed forν > 1.
Settingθ = logµ andφ = ν, we have

a(φ) = φ−1, bφ(θ) = φ−1 logS(eθ, φ), h(y, φ) = (y!)−φ.

Note thatbφ(θ) is now also a function ofφ (this only affects
optimization of the dispersionφ (details in [39])). For the
canonical link function, we setθ(η) = η, and thus

E[y] ≈ eη + 1
2ν − 1

2 = g−1(η) ⇒ g(µ) = log(µ− 1
2ν + 1

2 ).

Alternatively the parameter function in (34) can be used to
model a linear trend in the mean. The COM-Poisson GGPM
includes a dispersion hyperparameter that decouples the
variance of the Poisson from the mean, thus allowing more
control on the observation noise of the output. Figures 2c
and 2d show examples of using the COM-Poisson-GGPM
on underdispersed counting data with a linear trend. Note
that the variance of the prediction is much lower for the
COM-Poisson models than for the Poisson models (Figures
2a and 2b), thus illustrating that the COM-Poisson GGPM
can effectively estimate the dispersion of the data. A COM-
Poisson GLM (with canonical link) was proposed in [43],
and thus the COM-Poisson GGPM is a non-linear Bayesian
extension using a GP prior on the latent function.

6.3.1 Counting experiments

We perform two counting experiments using GGPMs with
Poisson-based likelihoods. In all cases, predictions are
based on the mode of the distribution for GGPMs, and the
rounded, truncated mean for GPR. In the first experiment,
we perform crowd counting using the dataset from [7], and
results are presented in Table 2. In all cases the compound
linear-RBF kernel was used. On the “right” crowd, Poisson-
GGPM performs the best (error1.264), followed by the
linearized Poisson (1.360). This is due to the large num-
ber of people in the “right” crowd, which leads to a more
non-linear (exponential) trend in the feature space. On the
other hand, the results on the “left” crowd show that the
linearized COM-Poisson, linearized Poisson, and standard
GPR all perform similarly, indicating a more linear trend in
the data (due to smaller crowd sizes and fewer occlusions).
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Method Inference MAE(R) MAE(L)

Gauss Exact 1.556 0.853
Poisson GGPM Taylor 1.264 1.035
Poisson GGPM Laplace 1.268 1.037
Poisson GGPM EP 1.272 1.035
Linearized Poisson GGPM Taylor 1.363 0.880
Linearized Poisson GGPM Laplace 1.360 0.868
Linearized Poisson GGPM EP 1.367 0.868
COM-Poisson GGPM Taylor 1.432 1.053
COM-Poisson GGPM Laplace 1.352 1.082
COM-Poisson GGPM EP 1.429 1.048
Lin. COM-Poisson GGPM Taylor 1.530 0.908
Lin. COM-Poisson GGPM Laplace 1.523 0.839

Lin. COM-Poisson GGPM EP 1.579 0.862

Table 2. Mean absolute errors for crowd counting.

In the second experiment, the GGPM is used for age
estimation on the FG-NET dataset [44], where 150 facial
features are extracted using active appearance models [45].
Our results are presented in Table 3, indicating that the Pois-
son GGPM with linearized mean performs the best among
the models, with an mean absolute error of5.824 versus
6.123 for standard GPR. Examples appear in Figure 3.

Method Inference MAE
GP Exact 6.123
Warped GP [4] Exact 6.111
Poisson GGPM Taylor 6.444
Linearized Poisson GGPM Taylor 5.975
Linearized Poisson GGPM Laplace 5.824

Table 3. Mean absolute error for age estimation on FG-NET.
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Figure 3. Examples of predicted age distributions on FG-NET.

Acknowledgements
This work was funded by CityU Hong Kong Grant 7200187. The au-

thors thank CE Rasmussen and CKI Williams for the GPML code [1].

References
[1] C. E. Rasmussen and C. K. I. Williams,Gaussian Processes for Ma-

chine Learning. MIT Press, 2006.
[2] A. Kapoor, K. Grauman, R. Urtasun, and T. Darrell, “Gaussian pro-

cesses for object categorization,”IJCV, vol. 88, pp. 169–199, 2010.
[3] D. Han, L. Bo, and C. Sminchisescu, “Selection and context for ac-

tion recognition,” inICCV, pp. 1933 –1940, sep. 2009.
[4] Y. Zhang and D.-Y. Yeung, “Multi-task warped gaussian process for

personalized age estimation,” inCVPR, 2010.
[5] B. Noris, K. Benmachiche, and A. G. Billard, “Calibration-free eye

gaze direction detection with gaussian processes,” inVISAPP, 2008.
[6] L. Raskin, M. Rudzsky, and E. Rivlin, “Tracking and classifying of

human motions with gp annealed particle filter,” inACCV, 2007.
[7] A. B. Chan, Z. S. J. Liang, and N. Vasconcelos, “Privacy preserv-

ing crowd monitoring: Counting people without people models or
tracking,” inCVPR, 2008.

[8] A. B. Chan and N. Vasconcelos, “Bayesian Poisson regression for
crowd counting,” inICCV, 2009.

[9] D. Ellis, E. Sommerlade, and I. Reid, “Modelling pedestrian trajec-
tory patterns with gaussian processes,” inICCV Workshops, 2009.

[10] C. C. Loy, T. Xiang, and S. Gong, “Modelling multi-object activity
by gaussian processes,” inBMVC, 2009.

[11] O. Williams, “A switched gaussian process for estimating disparity
and segmentation in binocular stereo,” inNIPS, 2006.

[12] F. Sinz, Q. Candela, G. Bakir, C. Rasmussen, and M. Franz, “Learn-
ing depth from stereo,” inDAGM Symposium, 2004.

[13] C. Plagemann, K. Kersting, P. Pfaff, and W. Burgard, “Gaussian
beam processes: A nonparametric bayesian measurement model for
range finders,” inIn Proc. of Robotics: Science and Systems, 2007.

[14] J. Zhu, S. Hoi, and M. Lyu, “Nonrigid shape recovery by gaussian
process regression,” inCVPR, pp. 1319 –1326, jun. 2009.

[15] L. Bo and C. Sminchisescu, “Twin gaussian processes forstructured
prediction,” IJCV, vol. 87, pp. 28–52, 2010.

[16] R. Urtasun and T. Darrell, “Sparse probabilistic regression for
activity-independent human pose inference,” inCVPR, 2008.

[17] M. Fergie and A. Galata, “Local gaussian processes for pose recog-
nition from noisy inputs,” inBMVC, 2010.

[18] X. Zhao, H. Ning, Y. Liu, and T. Huang, “Discriminative estimation
of 3d human pose using gaussian processes,” inICPR, 2008.

[19] R. Urtasun, D. Fleet, A. Hertzmann, and P. Fua, “Priors for people
tracking from small training sets,” inICCV, 2005.

[20] J. Wang, D. Fleet, and A. Hertzmann, “Gaussian process dynamical
models for human motion,”TPAMI, vol. 30.2, pp. 283–98, 2008.

[21] J. Chen, M. Kim, Y. Wang, and Q. Ji, “Switching gaussian process
dynamic models for simultaneous composite motion trackingand
recognition,” inCVPR, 2009.

[22] H. Nickisch and C. E. Rasmussen, “Approximations for binary gaus-
sian process classification,”JMLR, pp. 2035–78, 2008.

[23] M. Gibbs and D. J. C. Mackay, “Variational gaussian process classi-
fiers,” IEEE TNN, vol. 11, pp. 1458–1464, 1997.

[24] C. K. I. Williams and D. Barber, “Bayesian classification with gaus-
sian processes,”IEEE TPAMI, vol. 20, no. 12, pp. 1342–51, 1998.

[25] T. Minka, A family of algorithms for approximate Bayesian infer-
ence. PhD thesis, Massachusetts Institute of Technology, 2001.

[26] W. Chu and Z. Ghahramani, “Gaussian processes for ordinal regres-
sion,” JMLR, pp. 1–48, 2005.

[27] M. Girolami and S. Rogers, “Variational bayesian multinomial probit
regression with gaussian process priors,”Neur. Comp., vol. 18, 2005.

[28] M. Opper and C. Archambeau, “The variational gaussian approxima-
tion revisited,”Neur. Comp., vol. 21, pp. 786–92, March 2009.

[29] P. J. Diggle, J. A. Tawn, and R. A. Moyeed, “Model-based geostatis-
tics,” Applied Statistics, vol. 47, no. 3, pp. 299–350, 1998.

[30] A. Vehtari and J. Vanhatalo, “Sparse log gaussian processes via
mcmc for spatial epidemiology,” inWshop on GP in Practice, 2007.

[31] R. Duda, P. Hart, and D. Stork,Pattern Classification. 2001.
[32] P. McCullagh and J. Nelder,Generalized linear models. 1999.
[33] M. Seeger, S. Gerwinn, and M. Bethge, “Bayesian inference for

sparse generalized linear models,” inECML, 2007.
[34] H. Nickisch and M. W. Seeger, “Convex variational bayesian infer-

ence for large scale generalized linear models,” inICML, 2009.
[35] Z. Zhang, G. Dai, D. Wang, and M. I. Jordan, “Bayesian generalized

kernel models,” inAISTATS, vol. 9, 2010.
[36] G. C. Cawley, G. J. Janacek, and N. L. C. Talbot, “Generalised kernel

machines,” inIntl. Joint Conf. on Neural Networks, 2007.
[37] M. Seeger, “Gaussian processes for machine learning,”International

Journal of Neural Systems ., vol. 14, no. 2, pp. 69–106, 2004.
[38] V. Tresp, “The generalized bayesian committee machine,” in KDDM.
[39] A. B. Chan and D. Dong, “Derivations for generalized gaussian pro-

cess models,” tech. rep., City University of Hong Kong, 2011.
[40] A. B. Chan and N. Vasconcelos, “Probabilistic kernels for the classi-

fication of auto-regressive visual processes,” inCVPR, 2005.
[41] R. W. Conway and W. L. Maxwell, “A queuing model with state

dependent service rates,”J. Industrial Eng., vol. 12, pp. 132–6, 1962.
[42] G. Shmueli, T. Minka, J. Kadane, S. Borle, and P. Boatwright, “A

useful distribution for fitting discrete data: revival of the conway-
maxwell-poisson distribution,”J. of the Royal Statistical Society: Se-
ries C (Applied Statistics), vol. 54.1, pp. 127–142, 2005.

[43] S. Guikema and J. Coffelt, “A flexible count data regression model
for risk analysis,”Risk Analysis, vol. 28.1, pp. 213–223, 2008.

[44] “http://www.fgnet.rsunit.com.”
[45] T.F.Cootes, G. Edwards, and C.J.Taylor., “Active appearance mod-

els,” IEEE TPAMI, vol. 23.6, pp. 681–685, 2001.

2688


