
Appears in IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco, 2010.

Clustering Dynamic Textures with the Hierarchical EM Algorithm

Antoni B. Chan
Dept. of Computer Science

City University of Hong Kong

Emanuele Coviello Gert. R. G. Lanckriet
Dept. of Electrical and Computer Engineering

University of California, San Diego

Abstract

The dynamic texture (DT) is a probabilistic generative
model, defined over space and time, that represents a video
as the output of a linear dynamical system (LDS). The DT
model has been applied to a wide variety of computer vi-
sion problems, such as motion segmentation, motion classi-
fication, and video registration. In this paper, we derive a
new algorithm for clustering DT models that is based on
the hierarchical EM algorithm. The proposed clustering
algorithm is capable of both clustering DTs and learning
novel DT cluster centers that are representative of the clus-
ter members, in a manner that is consistent with the un-
derlying generative probabilistic model of the DT. We then
demonstrate the efficacy of the clustering algorithm on sev-
eral applications in motion analysis, including hierarchical
motion clustering, semantic motion annotation, and bag-of-
systems codebook generation.

1. Introduction

Modeling motion as a spatio-temporal texture has shown
promise in a wide variety of computer vision problems,
which have otherwise proven challenging for traditional
motion representations, such as optical flow [1, 2]. In par-
ticular, the dynamic texture model, proposed in [3], has
demonstrated a surprising ability to abstract a wide variety
of complex global patterns of motion and appearance into
a simple spatio-temporal model. The dynamic texture (DT)
is a probabilistic generative model, defined over space and
time, that represents a video as the output of a linear dynam-
ical system (LDS). The model includes a hidden-state pro-
cess, which encodes the motion of the video over time, and
an observation variable that determines the appearance of
each video frame, conditioned on the current hidden-state.
Both the hidden-state vector and the observation vector are
representative of the entire image, enabling a holistic char-
acterization of the motion for the entire sequence. The DT
model has been applied to a wide variety of computer vi-
sion problems, including video texture synthesis [3], video
registration [4, 5], motion and video texture segmentation
[6, 7, 8], human activity recognition [9], and motion classi-
fication [10, 11, 12, 13, 14]. These successes illustrate both
the modeling capabilities of the DT representation, and the

robustness of the underlying probabilistic framework.
In this paper, we address the problem of clustering dy-

namic texture models, i.e., clustering linear dynamical sys-
tems. Given a set of DTs (e.g., each learned from a small
video cube extracted from a large set of videos), the goal is
to group similar DTs into K clusters, while also learning a
representative DT “center” that can sufficiently summarize
each group. This is analogous to standard K-means cluster-
ing, except that the datapoints are dynamic textures, instead
of real vectors. A robust DT clustering algorithm has sev-
eral potential applications in video analysis, including: 1)
hierarchical clustering of motion; 2) video indexing for fast
video retrieval; 3) DT codebook generation for the bag-of-
systems motion representation; 4) semantic video annota-
tion via weakly-supervised learning. Finally, DT clustering
can also serve as an effective method for learning DTs from
a large dataset of video via hierarchical modeling.

The parameters of the LDS lie on a non-Euclidean space
(non-linear manifold), and hence cannot be clustered di-
rectly with the K-means algorithm, which operates on real
vectors in Euclidean space. One solution, proposed in [13],
first embeds the DTs into a Euclidean space using non-
linear dimensionality reduction (NLDR) with an appropri-
ate distance between DTs (e.g., the Martin distance), and
then performs K-means on the low-dimensional space to
obtain the clustering. While this performs the task of group-
ing the DTs into similar clusters, [13] is not able to gener-
ate novel DTs as cluster centers, due to the pre-image and
out-of-sample limitations of kernelized NLDR techniques.
In this case, the DT whose low-dimensional embedding is
closest to the low-dimensional cluster center is selected as
the representative DT center. These limitations could be ad-
dressed by clustering the DTs parameters directly on the
non-linear manifold, e.g., using intrinsic mean-shift [15]
or LLE [16]. However, these methods require analytic ex-
pressions for the log and exponential map on the manifold,
which are difficult to compute for the DT parameters.

An alternative to clustering with respect to the mani-
fold structure is to directly cluster the probability distri-
butions of the DTs. One method for clustering probabil-
ity distributions, in particular, Gaussians, is the hierarchi-
cal expectation-maximization (HEM) algorithm, proposed
in [17]. The HEM algorithm of [17] takes a Gaussian mix-

1

ture model (GMM) with Kb mixture components and re-
duces it to another GMM with Kr components (Kr < Kb),
where each of the new Gaussian components represents a
group of the original Gaussians (i.e., forming a cluster of
Gaussians). The HEM algorithm for GMMs has been em-
ployed in [18] to build GMM hierarchies for efficient image
indexing, and in [19] to estimate GMMs from large image
datasets for semantic annotation.

In this paper, we derive an HEM algorithm for cluster-
ing dynamic textures through their probability distributions.
The resulting algorithm is capable of both clustering DTs
and learning novel DT cluster centers that are representa-
tive of the cluster members, in a manner that is consistent
with the underlying generative probabilistic model of the
DT. We then demonstrate the efficacy of the clustering al-
gorithm on several computer vision problems: 1) hierarchi-
cal motion clustering; 2) semantic motion annotation us-
ing weakly-supervised learning; and 3) codebook genera-
tion for the bag-of-systems motion representation. The re-
mainder of the paper is organized as follows. In Section 2,
we review the dynamic texture model, and in Section 3, we
derive the HEM algorithm for dynamic textures. Finally,
Section 4 concludes with a discussion on applications and
experimental evaluations.

2. Dynamic texture models

A dynamic texture [3] (DT) is a generative model for
both the appearance and the dynamics of video sequences.
The model consists of a random process containing an ob-
servation variable yt, which encodes the appearance com-
ponent (vectorized video frame at time t), and a hidden state
variable xt, which encodes the dynamics (evolution of the
video over time). The appearance component is drawn at
each time instant, conditionally on the current hidden state.
The state and observation variables are related through the
linear dynamical system (LDS) defined by

xt = Axt−1 + vt, (1)

yt = Cxt + wt + ȳ, (2)

where xt ∈ R
n and yt ∈ R

m are real vectors (typically
n � m). The matrix A ∈ R

n×n is a state transition ma-
trix, which encodes the dynamics or evolution of the hidden
state variable (i.e., the motion of the video), and the ma-
trix C ∈ R

m×n is an observation matrix, which encodes
the appearance component of the video sequence. The vec-
tor ȳ ∈ R

n is the mean of the dynamic texture (i.e. the
mean video frame). vt is a driving noise process, and is
zero-mean Gaussian distributed, i.e., vt ∼ N (0, Q), where
Q ∈ R

n×n is a covariance matrix. wt is the observation
noise and is also zero-mean Gaussian, i.e., wt ∼ N (0, R),
where R ∈ R

m×m is a covariance matrix (typically, i.i.d.
noise is assumed, or R = rIm). Finally, the initial con-
dition is specified as x1 ∼ N (µ, S), where µ ∈ R

n is

the mean of the initial state, and S ∈ R
n×n is the co-

variance. The dynamic texture is specified by the parame-
ters Θ = {A, Q, C, R, µ, S, ȳ}, which can be learned using
maximum-likelihood (e.g. expectation-maximization [20]),
or a suboptimal, but computationally efficient, method [3].

While a dynamic texture models a time-series as a sin-
gle sample from a linear dynamical system, the dynamic
texture mixture (DTM), proposed in [8], models multiple
time-series as samples from a set of K dynamic textures.
The DTM model introduces an assignment random variable
z ∼ multinomial(π1, · · · , πK), which selects the parame-
ters of one of the K dynamic texture components for gen-
erating a video observation. Each mixture component is
parameterized by Θz = {Az, Cz, Qz, Rz, µz, Sz , ȳz}, and
the DTM model is parameterized by Θ = {πz, Θz}K

z=1.
Given a set of video samples, the maximum-likelihood pa-
rameters of the DTM can be estimated with recourse to the
expectation-maximization (EM) algorithm [8].

3. The HEM algorithm for dynamic textures

The hierarchical expectation-maximization (HEM) algo-
rithm was proposed in [17] to reduce a Gaussian mixture
model (GMM) with a large number of components into a
representative GMM with fewer components. In this sec-
tion we derive the HEM algorithm when the mixture com-
ponents are dynamic textures.

3.1. Formulation

Formally, let Θ(b) = {π(b)
i , Θ(b)

i }K(b)

i=1 denote the base
DT mixture model with K (b) components. The likelihood
of the observed random variable y1:τ ∼ Θ(b) is given by

p(y1:τ |Θ(b)) =
K(b)∑
i=1

π
(b)
i p(y1:τ |z(b) = i, Θ(b)), (3)

where y1:τ is the video, τ is the video length, and z ∼
multinomial(π(b)

1 , · · ·π(b)

K(b)) is the hidden variable that in-
dexes the mixture components. p(y1:τ |z(b) = i, Θ(b)) is
the likelihood of the video y1:τ under the ith DT mixture
component, and π

(b)
i is the prior weight for the ith com-

ponent. The goal is to find a reduced DT mixture model,
Θ(r), which represents (3) using fewer mixture compo-
nents. The likelihood of the observed video random vari-
able y1:τ ∼ Θ(r) is

p(y1:τ |Θ(r)) =
K(r)∑
j=1

π
(r)
j p(y1:τ |z(r) = j, Θ(r)), (4)

where K(r) is the number of DT components in
the reduced model (K (r) < K(b)), and z(r) ∼
multinomial(π(r)

1 , · · · , π
(r)

K(r)) is the hidden variable for in-
dexing components in Θ(r). Note that we will always use

i and j to index the components of the base model Θ (b)

and the reduced model Θ(r), respectively. We will also use
the short-hand Θ(b)

i and Θ(r)
j to denote the ith component

of Θ(b) and the jth component of Θ(r), respectively. For
example, we denote p(y1:τ |z(b) = i, Θ(b)) = p(y1:τ |Θ(b)

i).

3.2. Parameter estimation

To obtain the reduced model, HEM [17] considers a set
of N virtual observations drawn from the base model Θ (b),
such that Ni = Nπ

(b)
i samples are drawn from the ith com-

ponent. The DT, however, has both observable Y and hid-
den state X variables (which are distinct from the hidden
assignments of the overall mixture). To adapt HEM to mod-
els with hidden state variables, the most straightforward ap-
proach is to draw virtual samples from both X and Y ac-
cording to their joint distribution. However, when com-
puting the parameters of a new reduced DT model, there
is no guarantee that the virtual hidden states from the base
models live in the same basis (equivalent DT can be formed
by scaling, rotating, or permuting A, C, and X). This basis
mismatch will cause problems when estimating parameters
from the virtual samples of the hidden states. The key in-
sight is that, in order to remove ambiguity caused by mul-
tiple equivalent internal state representations, we must only
generate virtual samples from the observable Y , while treat-
ing the hidden states X as missing information in HEM.

We denote the set of Ni virtual video samples for the ith
component as Yi = {y(i,m)

1:τ }Ni
m=1, where y

(i,m)
1:τ ∼ Θ(b)

i is a
single video sample and τ is the length of the virtual video
(a parameter we can choose). The entire set of N samples
is denoted as Y = {Yi}K(b)

i=1 . To obtain a consistent hierar-
chical clustering, we also assume that all the samples in a
set Yi are eventually assigned to the same reduced compo-
nent Θ(r)

j . The parameters of the reduced model can then
be computed using maximum likelihood estimation with the
virtual video samples,

Θ(r)∗ = argmax
Θ(r)

log p(Y |Θ(r)) (5)

= argmax
Θ(r)

log
K(b)∏
i=1

K(r)∑
j=1

π
(r)
j

∫
p(Yi, Xi|Θ(r)

j)dXi (6)

where Xi = {x(i,m)
1:τ } are the hidden-state variables cor-

responding to Yi. (6) requires marginalizing over hidden
states, and hence it can be solved using the EM algorithm
[21], which is an iterative optimization method that alter-
nates between estimating the hidden variables with the cur-
rent parameters, and computing new parameters given the
estimated hidden variables (the “complete data”), given by

E-Step:Q(Θ(r), Θ̂(r)) = EX,Z|Y,Θ̂(r) [log p(X, Y, Z|Θ(r))],

M-Step: Θ(r)∗ = argmax
Θ(r)

Q(Θ(r), Θ̂(r)),

where Θ̂(r) is the current estimate of the parameters,
p(X, Y, Z|Θ(r)) is the “complete-data” likelihood, and
EX,Z|Y,Θ̂(r) is the conditional expectation with respect to
the current model parameters.

As is common with the EM formulation, we introduce a
hidden assignment variable zi,j , which is an indicator vari-
able for when the video sample set Yi is assigned to the jth
component of Θ(r), i.e., when z

(r)
i = j. The complete-data

log-likelihood is then

log p(X, Y, Z|Θ(r))

=
K(b)∑
i=1

K(r)∑
j=1

zi,j log π
(r)
j + zi,j log p(Yi, Xi|Θ(r)

j). (7)

The Q function is obtained by taking the conditional expec-
tation with respect to {X, Z} (see [22] for derivation),

Q(Θ(r), Θ̂(r)) =
K(b)∑
i=1

K(r)∑
j=1

ẑi,j log π
(r)
j (8)

+ ẑi,jNiEy|Θ(b)
i

[
E

x|y,Θ̂
(r)
j

[log p(y1:τ , x1:τ |Θ(r)
j)]

]
,

where the probability of assigning the ith base component
to the jth reduced component is

ẑi,j =
π

(r)
j exp

(
NiEΘ

(b)
i

[log p(y1:τ |Θ̂(r)
j)]

)
∑K(r)

j′=1 π
(r)
j′ exp

(
NiEΘ

(b)
i

[log p(y1:τ |Θ̂(r)
j′)]

) . (9)

Note that the Q function in (8) is very similar to that of
the EM algorithm for DTM [8]. In HEM, each base DT
Θ(b)

i takes role of a “data-point” in standard EM, where an

additional expectation w.r.t. Θ(b)
i averages over the possi-

ble value of the “data-point”, yielding the double expecta-
tion E

y|Θ(b)
i

[E
x|y,Θ̂

(r)
j

[·]]. These expectations of the hidden

state, conditioned on each component Θ (b)
i , are computed

through a common DT model Θ̂(r)
j . Hence, the potential

problem with mismatches between the hidden state bases of
Θ(b) is avoided. We next derive the E- and M-steps.

3.3. E-step

Substituting the DT component likelihoods into (8)
yields a Q function for HEM-DTM, which requires the fol-
lowing summary statistics (see [22] for derivation):

N̂j =
∑

i ẑi,j , Φj =
∑

i ŵi,j

∑τ
t=1 P̂

(i)
t,t|j ,

M̂j =
∑

i ŵi,j , Ψj =
∑

i ŵi,j

∑τ
t=2 P̂

(i)
t,t−1|j ,

ξj =
∑

i ŵi,j x̂
(i)
1|j , ϕj =

∑
i ŵi,j

∑τ
t=2 P̂

(i)
t,t|j ,

ηj =
∑

i ŵi,j P̂
(i)
1,1|j, φj =

∑
i ŵi,j

∑τ
t=2 P̂

(i)
t−1,t−1|j ,

γj =
∑

i ŵi,j

∑τ
t=1 û

(i)
t , Λj =

∑
i ŵi,j

∑τ
t=1 Û

(i)
t|j ,

βj =
∑

i ŵi,j

∑τ
t=1 x̂

(i)
t|j , Γj =

∑
i ŵi,j

∑τ
t=1 Ŵ

(i)
t|j ,

with ŵi,j = ẑi,jNi = ẑi,jπ
(b)
i N . These terms are the ag-

gregates of the individual expectations,

x̂
(i)
t|j = E

y|Θ(b)
i

[
E

x|y,Θ̂
(r)
j

[xt]
]
,

P̂
(i)
t,t|j = E

y|Θ(b)
i

[
E

x|y,Θ̂
(r)
j

[xtx
T
t]

]
,

P̂
(i)
t,t−1|j = E

y|Θ(b)
i

[
E

x|y,Θ̂
(r)
j

[xtx
T
t−1]

]
,

Ŵ
(i)
t|j = E

y|Θ(b)
i

[
(yt − ȳj)Ex|y,Θ̂

(r)
j

[xt]T
]
,

Û
(i)
t|j = E

y|Θ(b)
i

[
(yt − ȳj)(yt − ȳj)T

]
,

û
(i)
t = E

y|Θ(b)
i

[yt] ,

(10)

where Θ̂(r)
j is the current parameter estimate for the jth

component of the reduced model. Here, the inner expec-
tation E

x|y,Θ̂
(r)
j

[xt] is the conditional state estimator of the

Kalman smoothing filter [20, 23], when given an obser-
vation y. Hence, x̂

(i)
t|j is the output of the state estimator

from a Kalman smoothing filter for Θ̂(r)
j , when the obser-

vation y is generated with a different model Θ (b)
i . This is

also known as “suboptimal filter analysis” or “sensitivity
analysis” [23], where the goal is to analyze filter perfor-
mance when an optimal filter, according to some source
distribution, is run on a different source distribution. The
expectations in (10), along with expected log-likelihood
E

y|Θ(b)
i

[log p(y1:τ |Θ̂(r)
j)] in (9), can be computed using sen-

sitivity analysis on the Kalman forward and smoothing fil-
ters (see Appendix for details).

3.4. M-step

In the M-step, the parameters Θ(r) are updated by max-
imizing the Q function, yielding the parameter updates for
each DT component Θ(r)

j (derivation in [22]),

C∗
j = ΓjΦ−1

j , R∗
j = 1

τM̂j
(Λj − C∗

j Γj),

A∗
j = Ψjφ

−1
j , Q∗

j = 1
(τ−1)M̂j

(ϕj − A∗
jΨ

T
j),

µ∗
j = 1

M̂j
ξj , S∗

j = 1
M̂j

ηj − µ∗
j (µ

∗
j)

T ,

π∗
j = N̂j

K(b) , ȳ∗
j = 1

τM̂j
(γj − C∗

j βj).

(11)

4. Applications and Experiments
In this section, we discuss several novel applications of

HEM-DTM to video and motion analysis, including hierar-
chical motion clustering, semantic motion annotation, and
DT codebook generation for the bag-of-systems video rep-
resentation. These applications exploit several desirable
properties of HEM to obtain promising results. First, given
a set of input DTs, HEM estimates a novel set of DTs that
represents the input in a manner that is consistent with the
underlying generative probabilistic models, by maximizing
the log-likelihood of “virtual” samples generated from the

input DTs. As a result, the clusters formed by HEM are
also consistent with the probabilistic framework. Second,
HEM can estimate models on large datasets, by breaking the
learning problem into smaller pieces. In particular, inter-
mediate models are learned on small non-overlapping por-
tions of a large dataset, and the final model is estimated by
running HEM on the intermediate models. Because HEM
is based on maximum-likelihood principles, the resulting
model is equivalent to performing maximum-likelihood es-
timation on the full dataset. However, the computer mem-
ory requirements are significantly less, since we no longer
have to store the entire dataset during parameter estimation.
In addition, the intermediate models are estimated indepen-
dently of each other, so the task can be easily parallelized.
In the remainder of the section, we present three applica-
tions of HEM-DTM to video and motion analysis.

4.1. Hierarchical clustering of video textures

We first consider hierarchical motion clustering of video
textures, by successively clustering DT with the HEM al-
gorithm. Given a set of K1 video textures, spatio-temporal
cubes are extracted from the video and a DT is learned for
each video texture. This forms the first level of the hierar-
chy (the video-level DT). The next level in the hierarchy is
formed by clustering the DTs from the previous level into
K2 groups with the HEM algorithm (K2 < K1). The DT
cluster centers are selected as the representative models at
this level, and the process is continued with each level in
the hierarchy learned from the preceding level. The result is
a tree representation of the video dataset, with similar tex-
tures grouped together in the hierarchy. Note that this type
of hierarchy could not be built in a straightforward man-
ner using the EM algorithm on the original spatio-temporal
cubes. While it is possible to learn several DTMs with suc-
cessively smaller values of K , there is no guarantee that the
resulting mixtures, or the cluster memberships of the video
patches, will form a tree.

4.1.1 Experimental setup

We illustrate hierarchical motion clustering on the video
texture dataset from [8]. This dataset is composed of 99
video sequences, each containing 2 distinct video textures
(see Figure 2 for examples). There are 12 texture classes in
total, ranging from water (sea, river, pond) to plants (grass
and trees), to fire and steam. The first level of the hierar-
chy is obtained by learning a DT for each texture in each
video (hence, K1 = 198). Each DT is learned using [6]
on 100 spatio-temporal cubes (5 × 5 × 60 pixels) sampled
from the texture segment. The second level of the hierarchy
is obtained by running HEM on the level-1 DT mixture to
reduce the components to K2 = 12. Finally, the third and
fourth levels are obtained by running HEM on the previous
level for K3 = 6 and K4 = 3 clusters, respectively.

Figure 1. Hierarchical clustering of video textures: each level in
the hierarchy is obtained by clustering the DT models from the
preceding level. The arrows and brackets show the cluster mem-
bership from the preceding level (the groupings between Levels 1
and 2 are omitted for clarity).

4.1.2 Clustering Results

Figure 1 shows the hierarchical clustering that is obtained
with HEM. The first level contains the DTs that represent
each texture segment in the database. Each vertical bar rep-
resents one DT, where the color indicates the ground-truth
cluster label (texture name). In the second level, the 12 DT
components are shown as vertical bars, where the colors in-
dicate the proportion of the cluster membership with a par-
ticular ground-truth cluster label. In most cases, each clus-
ter corresponds to a single texture (e.g., grass, escalator,
pond), which illustrates that HEM is capable of clustering
DTs into similar motions. The Rand index for the level-2
clustering using HEM is 0.973 (for comparison, clustering
histograms-of-oriented-optical-flowusing K-means yields a
Rand index of 0.958). One error is seen in the HEM cluster
with both the river and river-far textures, which is reason-
able considering that the river-far texture contains both near
and far perspectives of water. Moving up to the third level
of the hierarchy, HEM forms two large clusters containing
the plant textures (plant-i, plant-a, grass) and water textures
(river-far, river, sea-far). Finally, in the fourth level, the
video textures are grouped together according to broad cat-
egories: plants (grass, plant-a, plant-i), water (pond, river-
far, river, sea-far), and rising textures (fire, jellyfish, and
steam). These results illustrate that HEM for DT is capable
of extracting meaningful clusters in a hierarchical manner.

4.2. Semantic video texture annotation

Another application of HEM is learning models for se-
mantic image annotation. [19] treats image annotation

as a semantic multi-class labeling problem (SML), where
each keyword is modeled as a distribution of image fea-
tures, p(y|wi) where wi is the ith keyword and y the ob-
served features. An image is annotated with the keywords
with highest posterior probability, conditioned on the im-
age, i.e., p(wi|y) ∝ p(y|wi)p(wi). Each annotation model
p(y|wi) is learned independently by estimating a GMM on
the positively-labeled images. One advantage of SML is
that the models can be learned from weakly-labeled data
(i.e., image labels without segmentation data) by pooling
over many images to amplify the relevant features. In this
case, HEM is used to reduce the complexity of the learning
problem. First, a GMM is estimated from each image us-
ing the standard EM algorithm. The annotation-level mod-
els are then estimated by applying HEM on the image-level
GMMs to obtain a reduced mixture model. The burden of
computation is in estimating the image-level GMMs, which
can be easily executed in parallel.

We can perform semantic motion annotation with DTs
by employing HEM in similar manner. First, each video is
summarized by estimating a DTM with the EM algorithm
from a dense sampling of spatio-temporal cubes. Next, a
video annotation model is learned for each keyword by ap-
plying HEM to the video DTMs that are positively labeled
with the keyword. Finally, a test video is annotated with the
keywords with the largest posterior probability, given the
spatio-temporal cubes of the test video.

4.2.1 Experimental setup

We learned DTM annotation models for the 12 video tex-
ture classes from the database of [8]. For each video in
the training set, a DTM with K = 4 components (n = 5)
is learned with the EM algorithm on 5 × 5 × 60 spatio-
temporal cubes. HEM is then applied to estimate the an-
notation models, which are DTMs with K = 2. Finally, a
test video is annotated with the two keywords with largest
posterior probability. The annotation models were trained
on 50% of the dataset, with the remaining videos used for
testing. We record the precision (P) and recall (R), along
with the F-score (the harmonic mean of P and R), averaged
over the keywords. The results are averaged over 10 trials.

4.2.2 Annotation Results

Table 1 presents the results for annotation using the DTM
models. We compare two instantiations of the models:
DTM that uses the image mean, and DTM that does not use
the image mean. In the latter case, each video is normalized
to have zero mean in time. The DTM without the image
mean achieves a higher F-score (0.48) than the model using
the mean (0.46). This discrepancy in performance is due to
variations in lighting intensity in the various textures, which
is negated by normalizing the video.

For comparison, we trained an image annotation model
using GMMs on DCT features (GMM-DCT), as in [19],

a)

b) river-far, escalator grass, fire plant-a, river-far grass, steam sea-far, pond river, jellyfish
c) river-far, sea-far grass, plant-a plant-a, river grass, plant-a sea-far, river-far jellyfish, river
Figure 2. Video texture examples: a) video with 2 textures; b) ground-truth labels; c) top 2 semantic annotations using DTM.

1 annotation 2 annotations
Method P R F P R F
DTM (w/o mean) 0.67 0.36 0.47 0.52 0.44 0.48
DTM (w/ mean) 0.63 0.33 0.44 0.52 0.41 0.46
GMM-DCT (w/o mean) 0.51 0.28 0.37 0.44 0.38 0.41
GMM-DCT (w/ mean) 0.62 0.32 0.43 0.50 0.44 0.47
GMM-OF 0.60 0.34 0.44 0.47 0.41 0.44

Table 1. Semantic motion annotation results using DTM.

with K = 2 components. Although all the frames of the
video are used to train the model, each frame is treated
independently and thus the GMMs do not explicitly en-
code any motion. When using the image-mean, the GMM
achieves a slightly lower F-score of 0.47 than the DTM
(0.48). However, when the image-mean is ignored, the per-
formance drops significantly to 0.41. This indicates that the
GMM uses the intensity of the image to model the motion
keywords. On the other hand, the DTM can model both
the motion and appearance; when the appearance compo-
nent (image-mean) is removed, the model can still distin-
guish the various motion classes. Looking at other motion
features, learning GMMs on the optical flow of the video
(GMM-OF) also yields a lower F-score of 0.44 than DTM.

Figure 2 shows the top two annotations for several ex-
ample videos in the test set. In general, the system is able to
annotate at least one of the video textures correctly. There
are some errors, which are caused by similar motion classes
(e.g., river-far and sea-far).

4.3. Codebook generation for the bag-of-systems
motion representation

The bag-of-systems (BoS) representation for video,
where each motion codeword is a dynamic texture model
(LDS), was recently proposed in [13]. To learn the DT
codebook, [13] first estimates individual DTs, learned from
spatio-temporal cubes extracted at spatio-temporal interest
points in the video. Codewords are then generated by clus-
tering the individual DTs using a combination of non-linear
dimensionality reduction (NLDR) and K-means clustering.
Due to the pre-image problem of kernelized NLDR, this
clustering method is not capable of producing novel DT
codewords, as discussed in Section 1.

HEM-DTM can be used to generate novel DT codewords
for the bag-of-systems representation. First, for each video
in the training corpus, a dense sampling of spatio-temporal
cubes is extracted, and a DTM is learned with the EM al-
gorithm [8]. Next, these DTMs are pooled together to form
one large DTM, and the number of mixture components is

reduced using the proposed HEM algorithm. Finally, the
novel DT cluster centers are selected as the BoS codewords.
Note that this method of codebook generation is able to ex-
ploit all the training data, as opposed to only a subset se-
lected via interest-point operators as in [13]. This is made
possible through the efficient hierarchical learning of the
codebook model, as discussed in the previous sections.

4.3.1 Experimental setup

We use HEM to learn the BoS codebook on the database
from [13]. The video-level DTMs were learned with K = 4
components and n = 10 on ∼ 4000 overlapping spatio-
temporal cubes with size 5 × 5 × 75 pixels. A DT code-
book was learned by reducing the mixture formed from all
the video DTMs to K = 8 components with the HEM al-
gorithm (τ = 20 and N = 1000). Given the codebook,
the BoS representation of a video is formed by counting
the number of occurrences of each codeword in the video,
where each spatio-temporal cube is assigned to the code-
word with largest likelihood. A standard term frequency
(TF) or term frequency-inverse document frequency (TF-
IDF) representation can then be used to compute the his-
togram representation (weight vector w).

To illustrate the effectiveness of the BoS codebook
learned with HEM, we perform the same classification ex-
periments as [13], which consist of two binary problems
(water vs. fountain and fountain vs. waterfall), a four-class
problem, and an eight-class problem. In each experiment,
50% of the videos are used for training the model, with
the remaining ones used for testing. We test the k-nearest
neighbors classifier with the χ2 and square-root distances
between the TF weight vectors (denoted as TF-kNN-χ2 and
TF-kNN-S), for k ∈ {1, 3}. We also test the naive Bayesian
classifier (NB) . The results are averaged over 20 trials.

4.3.2 Classification results

Table 2 presents the video classification results for the var-
ious classifiers using the HEM-DTM codebook, proposed
here, and the NLDR codebook from [13]. “best” refers to
the best accuracy among the various classifiers.

The first classification task considers the classes wa-
ter and fountain, which are visually very different, and
HEM-DTM and NLDR codebooks both achieve the same
“best” classification rate of 100%. For the fountain vs.
waterfall problem, which is a more challenging task be-
cause the classes are visually similar, classification with the

HEM-DTM NLDR [13]
TF-1NN-χ2 TF-3NN-χ2 TF-1NN-S TF-3NN-S NB best TF-1NN-χ2 TF-3NN-χ2 NB best

Water vs. Fountain 97 94 99 99 100 100 97 97 100 100
Fountain vs. Waterfall 100 97 98 95 100 100 69 68 98 98

4 classes 94 89 95 92 95 95 87 89 68 89
8 classes 83 78 88 83 81 88 60 58 55 80

Table 2. Classification results using different methods for learning a bag-of-systems codebook.

HEM-DTM codebook achieves 100% accuracy. Looking
at the individual classifiers, those based on the HEM-DTM
codebook consistently outperform those based on NLDR.
For example, the accuracy of TF-1NN-χ2 is 100% for the
HEM-DTM codebook, but drop to 69% for the NLDR code-
book. Hence, the HEM-DTM codebook is a more stable
representation in these first two scenarios.

The final two classification tasks consider 4-class and 8-
class problems. The HEM-DTM codebook again outper-
forms that of NLDR (95% versus 89% on the 4-class prob-
lem, and 88% versus 80% on the 8-class problem), with
each HEM-BoS classifier consistently improving over the
NLDR version. Furthermore, when increasing the cardi-
nality of the classification task to 4 and 8 classes, the ac-
curacy of NB using the NLDR codebook drops dramat-
ically, suggesting that the NLDR codebook violates the
naive Bayes assumption that the codewords are independent
of each other. In contrast, the performance using the HEM
codebook does not drop as much, suggesting that the HEM
codewords are independent of each other (i.e., unique), and
that they are spread out in the DTM space, enabling better
representation of the data. Finally, we note that both the
χ2 distance and square root distance achieve high accuracy,
despite the latter being discarded in [13] due to inconsistent
results. These classification results indicate that HEM is
an effective method for learning a codebook for the bag-of-
systems representation. The improvement in performance
is due to both the generation of novel DT codewords, and
the ability to learn these codewords efficiently from more
data, i.e., from a dense sampling of spatio-temporal cubes,
rather than those selected by interest point operators.

5. Conclusions
In this paper we derived a hierarchical EM algorithm

that clusters DTs while learning novel DTs as representa-
tive cluster centers. Experiments using the new algorithm
on several motion analysis problems, such as motion anno-
tation and BoS codebook generation, show promising re-
sults. Future work will be directed at extending HEM to
general graphical models, allowing a wide variety of gen-
erative models to be clustered or used as codewords in a
bag-of-X representation.

Appendix: Computing the E-step for HEM-DTM

The expectations in (10) for each Θb = Θ(b)
i and

Θr = Θ(r)
j can be computed efficiently with Algorithm

1, which we derive in [22]. First, the Kalman smooth-
ing filter (Algorithm 2) computes the conditional expec-
tations x̂

(r)
t|τ = Ex|y,Θr

[xt], V̂
(r)
t|τ = covx|y,Θr

(xt), and

V̂
(r)
t,t−1|τ = covx|y,Θr

(xt, xt−1), where â
(r)
t|s denotes the ex-

pectation at time t, conditioned on sequence y1:s, w.r.t. Θr.
Next, sensitivity analysis of the Kalman filter (Algorithm 3)
computes the mean and variance of the one-step ahead state
estimators when y1:t−1 ∼ Θb,

x̂t = EΘb

x
(b)
t

x̂
(b)
t|t−1

x̂
(r)
t|t−1

 , V̂t = covΘb

(

x
(b)
t

x̂
(b)
t|t−1

x̂
(r)
t|t−1

). (12)

The notation V[i,j] refers to the (i, j) matrix in the block
matrix V, and x[i] refers to the ith vector in the block vector
x. Finally, sensitivity analysis of the Kalman smoothing
filter (Algorithm 4) computes the mean and variance of the
state estimators for the full sequence y1:τ ∼ Θb,

x̂
(b)
t = Ey|Θb

[
x̂

(r)
t|τ

]
, κ̂

(b)
t = covy|Θb

(yt, x̂
(r)
t|τ)

V̂
(b)
t = Ey|Θb

[V̂ (r)
t|τ], V̂

(b)
t,t−1 = Ey|Θb

[V̂ (r)
t,t−1|τ],

χ̂
(b)
t = covy|Θb

(x̂(r)
t|τ), χ̂

(b)
t,t−1 = covy|Θb

(x̂(r)
t|τ , x̂

(r)
t−1|τ).

Algorithm 1 Expectations for HEM-DTM
1: Input: DT parameters Θb and Θr , length τ .
2: Run Kalman smoothing filter (Algorithm 2) on Θb and Θr .
3: Run sensitivity analysis on Θb and Θr for the Kalman filter and

Kalman smoothing filter (Algorithms 3 and 4).
4: Compute E-step expectations, for t = {1, · · · , τ}:

û
(b)
t = Cbx̂

[1]
t + ȳb,

Û
(b)
t = CbV̂

[1,1]
t CT

b + Rb + (û
(b)
t − ȳr)(û

(b)
t − ȳr)T ,

P̂
(b)
t = V̂

(r)
t|τ + χ̂

(b)
t + x̂

(b)
t (x̂

(b)
t)T ,

P̂
(b)
t,t−1 = V̂

(r)
t,t−1|τ + χ̂

(b)
t,t−1 + x̂

(b)
t (x̂

(b)
t−1)

T ,

Ŵ
(b)
t = κ̂

(b)
t + (û

(b)
t − ȳr)(x̂

(b)
t)T .

5: Compute expected log-likelihood �:

Λ̂t = Cr(V̂
[3,3]
t + x̂

[3]
t (x̂

[3]
t)T)CT

r , Σ̂t = CrV̂
(r)
t|t−1

CT
r + Rr ,

λ̂t = CbV̂
[2,3]
t CT

r + (Cbx̂
[1]
t + ȳb − ȳr)(x̂

[3]
t)T CT

r ,

� =
Pτ

t=1 − 1
2
tr

“
Σ̂−1

t (Û
(b)
t − λ̂t − λ̂T

t + Λ̂t)
”

− 1
2

log
˛̨̨
Σ̂t

˛̨̨
− m

2
log(2π).

6: Output: {x̂(b)
t , P̂

(b)
t , P̂

(b)
t,t−1, Ŵ

(b)
t , Û

(b)
t , û

(b)
t }, �.

Acknowledgment

E.C. and G.R.G.L. wish to acknowledge support from
NSF grants DMS-MSPA 0625409 and CCF-0830535.

Algorithm 2 Kalman smoothing filter
1: Input: DT parameters Θ = {A, C, Q, R, µ, S, ȳ}, length τ .
2: Initialize: x̂1|0 = µb, V̂1|0 = Sb.
3: for t = {1, · · · , τ} do
4: {Kalman filter – forward recursion}

V̂t|t−1 = AV̂t−1|t−1AT + Q,

Kt = V̂t|t−1CT (CV̂t|t−1CT + R)−1,

V̂t|t = (I − KtC)V̂t|t−1,
Gt = AKt, Ft = A − AKtC.

5: end for
6: Initialize: V̂τ,τ−1|τ = (I − KτC)AV̂τ−1|τ−1.
7: for t = {τ, · · · , 2} do
8: {Kalman smoothing filter – backward recursion}

Jt−1 = V̂t−1|t−1AT (V̂t|t−1)
−1, Ht−1 = A−1 − Jt−1,

V̂t−1|τ = V̂t−1|t−1 + Jt−1(V̂t|τ − V̂t|t−1)J
T
t−1,

V̂t−1,t−2|τ = V̂t−1|t−1JT
t−2

+Jt−1(V̂t,t−1|τ − AV̂t−1|t−1)J
T
t−2.

9: end for
10: Output: {V̂t|t−1, V̂t|t, V̂t|τ , V̂t,t−1|τ , Gt, Ft, Ht}.

Algorithm 3 Sensitivity analysis of the Kalman filter
1: Input: DTs Θb and Θr , associated Kalman filters, length τ .

2: Initialize: x̂1 =

2
4 µb

µb

µr

3
5 , V̂1 =

2
4 Sb 0 0

0 0 0
0 0 0

3
5.

3: for t = {2, · · · , τ + 1} do
4: Form block matrices:

At−1 =

2
64

Ab 0 0

G
(b)
t−1Cb F

(b)
t−1 0

G
(r)
t−1Cb 0 F

(r)
t−1

3
75 , B =

2
4 I

0
0

3
5 ,

Ct−1 =

2
64

0

G
(b)
t−1

G
(r)
t−1

3
75 , Dt−1 =

2
4 0

0

G
(r)
t−1

3
5 .

5: Update means and covariances:
x̂t = At−1x̂t−1 + Dt−1(ȳb − ȳr),

V̂t = At−1V̂t−1A
T
t−1 + BQbB

T + Ct−1RbC
T
t−1.

6: end for
7: Output: {x̂t, V̂t}.

References
[1] B. Horn and B. Schunk, “Determining optical flow,” Artificial Intel-

ligence, vol. 17, pp. 185–204, 1981.

[2] B. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in Proc. DARPA Image Under-
standing Workshop, 1981, pp. 121–130.

[3] G. Doretto, A. Chiuso, Y. N. Wu, and S. Soatto, “Dynamic textures,”
Intl. J. Computer Vision, vol. 51, no. 2, pp. 91–109, 2003.

[4] A. W. Fitzgibbon, “Stochastic rigidity: image registration for
nowhere-static scenes,” in ICCV, vol. 1, 2001, pp. 662–70.

[5] A. Ravichandran and R. Vidal, “Dynamic texture registration,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2009.

[6] G. Doretto, D. Cremers, P. Favaro, and S. Soatto, “Dynamic texture
segmentation,” in ICCV, vol. 2, 2003, pp. 1236–42.

[7] A. Ghoreyshi and R. Vidal, “Segmenting dynamic textures with Ising
descriptors, ARX models and level sets,” in Dynamical Vision Work-
shop in the European Conf. on Computer Vision, 2006.

[8] A. B. Chan and N. Vasconcelos, “Modeling, clustering, and segment-
ing video with mixtures of dynamic textures,” IEEE TPAMI, vol. 30,
no. 5, pp. 909–926, May 2008.

Algorithm 4 Sensitivity analysis of the Kalman smoothing filter
1: Input: DTs Θb and Θr , associated Kalman smoothing filter, and

Kalman filter sensitivity analysis, length τ .

2: Initialize: x̂
(b)
τ = A−1

r x̂
[3]
τ+1, χ̂

(b)
τ = A−1

r V̂
[3,3]
τ+1A−T

r , Lτ =

A−1
r , Mτ = 0.

3: for t = {τ, · · · , 1} do
4: Compute cross-covariance:

ρt =
“
LtF

(r)
t V̂

[3,2]
t + (LtG

(r)
t Cb + Mt)V̂

[1,1]
t

”
CT

b + LtG
(r)
t Rb.

5: if t > 1 then
6: Compute sensitivity:

ωt = LtF
(r)
t V̂

[3,3]
t + (LtG

(r)
t Cb + Mt)V̂

[2,3]
t ,

x̂
(b)
t−1 = H

(r)
t−1x̂

[3]
t + J

(r)
t−1x̂

(b)
t ,

χ̂
(b)
t−1 =

h
H

(r)
t−1 J

(r)
t−1

i "
V̂

[3,3]
t ωT

t

ωt χ̂
(b)
t

"
(H

(r)
t−1)

T

(J
(r)
t−1)

T

#
,

χ̂
(b)
t,t−1 = ωt(H

(r)
t−1)T + χ̂

(b)
t (J

(r)
t−1)T .

7: Update matrices:

Lt−1 = H
(r)
t−1 + J

(r)
t−1LtF

(r)
t ,

Mt−1 = J
(r)
t−1(LtG

(r)
t Cb + Mt)Ab.

8: end if
9: end for

10: Output: {x̂(b)
t , χ̂

(b)
t , χ̂

(b)
t,t−1, κ̂

(b)
t = ρT

t }.

[9] R. Chaudry, A. Ravichandran, G. Hager, and R. Vidal, “Histograms
of oriented optical flow and Binet-Cauchy kernels on nonlinear dy-
namical systems for the recognition of human actions,” in CVPR,
2009.

[10] P. Saisan, G. Doretto, Y. Wu, and S. Soatto, “Dynamic texture recog-
nition,” in CVPR, vol. 2, 2001, pp. 58–63.

[11] A. B. Chan and N. Vasconcelos, “Probabilistic kernels for the classi-
fication of auto-regressive visual processes,” in CVPR, vol. 1, 2005,
pp. 846–851.

[12] ——, “Classifying video with kernel dynamic textures,” in IEEE
Conf. Computer Vision and Pattern Recognition, 2007.

[13] A. Ravichandran, R. Chaudhry, and R. Vidal, “View-invariant dy-
namic texture recognition using a bag of dynamical systems,” in
CVPR, 2009.

[14] B. Ghanem and N. Ahuja, “Phase based modelling of dynamic tex-
tures,” in IEEE Intl. Conf. on Computer Vision, 2007.

[15] H. Cetingul and R. Vidal, “Intrinsic mean shift for clustering on
Stiefel and Grassmann manifolds,” in CVPR, 2009.

[16] A. Goh and R. Vidal, “Clustering and dimensionality reduction on
Riemannian manifolds,” in CVPR, 2008.

[17] N. Vasconcelos and A. Lippman, “Learning mixture hierarchies,” in
Neural Information Processing Systems, 1998.

[18] N. Vasconcelos, “Image indexing with mixture hierarchies,” in IEEE
Conf. Computer Vision and Pattern Recognition, 2001.

[19] G. Carneiro, A. B. Chan, P. J. Moreno, and N. Vasconcelos, “Su-
pervised learning of semantic classes for image annotation and re-
trieval,” IEEE TPAMI, vol. 29, no. 3, pp. 394–410, March 2007.

[20] R. H. Shumway and D. S. Stoffer, “An approach to time series
smoothing and forecasting using the EM algorithm,” Journal of Time
Series Analysis, vol. 3, no. 4, pp. 253–264, 1982.

[21] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” Journal of the Royal
Statistical Society B, vol. 39, pp. 1–38, 1977.

[22] A. B. Chan, E. Coviello, and G. Lanckriet, “Derivation of the hierar-
chical EM algorithm for dynamic textures,” City University of Hong
Kong, Tech. Rep., 2010.

[23] A. Gelb, Applied Optimal Estimation. MIT Press, 1974.

