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Abstract

Most image captioning models aim to generate captions based solely on the input
image. However images that are similar to the given input image contain variations of the
same or similar concepts as the input image. Thus, aggregating information over similar
images could be used to improve image captioning models, by strengthening or inferring
concepts that are in the input image. In this paper, we propose an image captioning model
based on KNN graphs composed of the input image and its similar images, where each
node denotes an image or a caption. An attention-in-attention (AiA) model is developed
to refine the node representations. Using the refined features significantly improves the
baseline performance, e.g., CIDEr score obtained by the Updown model increases from
120.1 to 125.6. Compared with the state-of-the-art performance, our proposed method
obtains 129.3 of CIDEr and 22.6 of SPICE on Karpathy’s test split, which is competitive
with the models that employ fine-grained image features such as scene graphs and image
parsing trees.

1 Introduction

Image captioning is a challenging task that combines computer vision and natural language
generation. To achieve the goal of accurately describing images, a wide range of approaches
have been developed, most of which pay much attention to the image itself, i.e., using CNN
features[3, 38, 40, 41, 44], object-level features [2, 29], object labels and attributes [11, 48],
scene graphs [45, 46] and image parsing tree [47]. However, it could be difficult to directly
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# Neighbour- | Max. CIDEr | Avg. CIDEr | Min. CIDEr
ing images

1 89.0 51.8 22.1

2 107.6 49.6 12.0

3 118.4 48.6 79

4 125.8 477 5.9

5 131.1 47.0 4.6

Ca1 G Gy Caa Cos neighbour

Figure 1: Left: candidate images, its neighbours and the constructed graph. Iy represents the
visual feature of the candidate image, /{; 5y represent the visual features of neighbours 1 and
2 and, ¢;; denotes the representation of the jth caption of the ith neighbouring image. Right:
the measurement of useful information using different numbers of neighbours.

Graph structure

translate visual features to concepts [50], e.g., in Figure 1 (left), the concept “use a cell
phone” is not easy to be recognized, since there are some ambiguous descriptions, such as
“holding a cell phone” and “looking at a cell phone”. Yet if we compare the candidate image
with its neighbours, the human annotation of the neighbouring images would leak the clue
of “use”, hence, it could be easier to learn difficult concepts.

To describe a scene, we humans, in particular children who lack knowledge of the scene,
generally refer to the descriptions from others or the descriptions of similar scenes. Hence
introducing neighbouring images into image captioning models also imitates the ability of
humans. Neighbouring images normally contain useful information that benefits image cap-
tioning. To measure how much useful information is contained in the neighbours, given
an image we first find its top-k nearest neighbours (KNN) based on Euclidean distance in
the feature space and then directly use the captions of its neighbours to describe it. Figure
1 (right) shows the CIDEr scores [36] on Karpathy’s test split (5,000 images) [19], where
Max CIDEr=max{CIDETr(c;j, COGT) li=1,---,n;j=1,--- ,m}, and similarly for Min CIDEr.
Avg. CIDEr:% Y X} CIDE r(c; j,CgT), where and C(?T denotes the set of ground-truth
captions of the candidate image Iy, » and m denote the number of neighbours and the number
of captions per neighbour, respectively. The more neighbours we use, the higher the maxi-
mum CIDEr we can obtain, indicating more useful information. However, using too many
neighbours could introduce noise as well, e.g., the average CIDEr score slightly decreases,
therefore, it could be difficult to filter out noisy information.

In this paper, to leverage the useful information underlying similar images and the corre-
sponding human annotations, we first construct KNN graphs, i.e., each image in the dataset
has n neighbouring images and each neighbour has m human annotations (see Figure 1).
We then use the KNN graph to refine the features of the candidate image using features
from the neighbouring images. Each node of the KNN graph is composed of multiple items
such as words and objects, thus we need to aggregate the messages from other items in the
same node, as well as messages from the neighbouring nodes. In this paper, we propose an
attention in attention network (AiA) to refine the candidate image features. The outer atten-
tion is used to pass messages over the graph, which is similar to graph attention networks
(GATs) [37]. Whereas GATs require that each node in the graph is represented by a vector,
in our constructed graphs, each node is a set of vectors. Hence we use an inner attention
to refine the node feature. Our proposed AiA feature refiner is a general module that can
be plugged into any captioning model and we applied AiA to different baseline models and
the experimental results show that AiA is able to improve the baseline performance, e.g.,
Updown model obtains 120.1 CIDEr score [2], in contrast, using AiA boosts CIDEr score
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up to 125.6.

The main contributions of this paper are in threefold. First, we propose a new feature
refinement framework that takes similar images and the corresponding human annotations
into account, which is different from current feature refinement frameworks that only con-
sider the candidate image itself. Second, we propose an attention in attention network (AiA)
to refine features over graph structures, which is a general module that can be plugged into
any existing model. Third, we conduct extensive experiments and the results show that our
proposed model significantly improves the baseline performance, achieving competitive per-
formance compared with the models that employ image parsing trees to refine features [47],
e.g., 129.3 (ours) v.s 130.6 of CIDEr and 22.6 (ours) v.s 22.3 of SPICE on Kaparthy’s test
split.

2 Related work

End-to-end models dominate the task of image captioning [2, 3, 11, 16, 26, 27, 30, 38, 44,
45, 46, 47, 48]. In [38], a CNN+LSTM framework is proposed, where image features are
extracted by a inception network [33] pre-trained on ImageNet [6], and then an LSTM [15]
is employed to decode a sentence from the image feature. The connection between CNN
and LSTM is a linear transformation, which is simple to learn the correspondence between
words and image regions. An attention mechanism is introduced into captioning models by
[44], which is able to learn the correspondence between words and image regions. Similarly,
[48] applies the attention mechanism to semantics instead of image regions, indicating that
the detected concepts play an important role in image captioning. To further improve the
performance, [2] uses object-level features provided by Faster-RCNN [13] instead of CNN
features. Yao et. al. [46] explore scene graphs [18] in image captioning, where an image
is represented by a graph and each node is an object, each edge denotes the relationship
between object nodes. Also, [45] use scene graphs for image captioning. Besides using
object-level features, [47] employs instance-level features obtained from Mask-RCNN [14]
and the image is parsed into a tree structure, where the root is the image, the leaves are
the instances and the middle-level nodes denote the object regions. Tree-LSTMs [34] are
applied to refine the image features. Another property—diversity of captions also draw much
attention [4, 5, 8, 32, 39, 42, 43], which requires a captioning model to generate multiple
captions for each image.

In the above related works, researchers pay much attention to obtaining better image
representations, e.g., CNN features — object-level features — scene graphs — image parsing
trees. However all of these works only consider the candidate image itself but ignore the
similar images that could provide useful information for describing the candidate image.
J. Devlin et al. explore using the nearest images for image captioning [9], revealing that
using the captions of similar images to describe a candidate image could achieve competitive
performance compared to existing models, indicating that similar images indeed contain
useful information — however, they do not develop a model to leverage the information.
Although [10] uses similar images by weighting them, the captions of the similar image are
not used. In this paper, we explore using the similar images and their corresponding captions
for image captioning.


Citation
Citation
{Yao, Pan, Li, and Mei} 2019

Citation
Citation
{Anderson, He, Buehler, Teney, Johnson, Gould, and Zhang} 2018

Citation
Citation
{Aneja, Deshpande, and Schwing} 2018

Citation
Citation
{Gan, Gan, He, Pu, Tran, Gao, Carin, and Deng} 2017

Citation
Citation
{Huang, Wang, Chen, and Wei} 2019

Citation
Citation
{Lu, Xiong, Parikh, and Socher} 2017

Citation
Citation
{Luo, Price, Cohen, and Shakhnarovich} 2018

Citation
Citation
{Rennie, Marcheret, Mroueh, Ross, and Goel} 2017

Citation
Citation
{Vinyals, Toshev, Bengio, and Erhan} 2015

Citation
Citation
{Xu, Ba, Kiros, Cho, Courville, Salakhudinov, Zemel, and Bengio} 2015

Citation
Citation
{Yang, Tang, Zhang, and Cai} 2019

Citation
Citation
{Yao, Pan, Li, and Mei} 2018

Citation
Citation
{Yao, Pan, Li, and Mei} 2019

Citation
Citation
{You, Jin, Wang, Fang, and Luo} 2016

Citation
Citation
{Vinyals, Toshev, Bengio, and Erhan} 2015

Citation
Citation
{Szegedy, Vanhoucke, Ioffe, Shlens, and Wojna} 2016

Citation
Citation
{Deng, Dong, Socher, Li, Li, and Fei-Fei} 2009

Citation
Citation
{Hochreiter and Schmidhuber} 1997

Citation
Citation
{Xu, Ba, Kiros, Cho, Courville, Salakhudinov, Zemel, and Bengio} 2015

Citation
Citation
{You, Jin, Wang, Fang, and Luo} 2016

Citation
Citation
{Anderson, He, Buehler, Teney, Johnson, Gould, and Zhang} 2018

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Yao, Pan, Li, and Mei} 2018

Citation
Citation
{Johnson, Krishna, Stark, Li, Shamma, Bernstein, and Fei-Fei} 2015

Citation
Citation
{Yang, Tang, Zhang, and Cai} 2019

Citation
Citation
{Yao, Pan, Li, and Mei} 2019

Citation
Citation
{He, Gkioxari, Doll{á}r, and Girshick} 2017

Citation
Citation
{Tai, Socher, and Manning} 2015

Citation
Citation
{Cornia, Baraldi, and Cucchiara} 2019

Citation
Citation
{Dai, Fidler, Urtasun, and Lin} 2017

Citation
Citation
{Deshpande, Aneja, Wang, Schwing, and Forsyth} 2019

Citation
Citation
{Shetty, Rohrbach, and Hendricks} 2017

Citation
Citation
{Wang, Schwing, and Lazebnik} 2017

Citation
Citation
{Wang and Chan} 2019

Citation
Citation
{Wang, Wu, Lu, Xiao, Li, Zhang, and Zhuang} 2016

Citation
Citation
{Devlin, Gupta, Girshick, Mitchell, and Zitnick} 2015

Citation
Citation
{Ding, Chen, Zhao, Chen, Han, and Liu} 2019


4 Q. WANG, J. WANG, A. B. CHAN, ET AL.: NEIGHBOURS MATTER
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Figure 2: Our proposed model is composed of 3 modules: (1) graph construction, (2) fea-
ture refiner, (3) language model. The feature refiner stack a multiple layers of attention-in-
attention network, where the outer attention is used to aggregate messages from the neigh-
bouring nodes, and the inner attention is employed to aggregate the items of the same node.

3 Methodology

Notation. Let Iy = {09,---,0}} be a candidate image, where oY € RP* denotes the ith ob-
ject in the candidate image and the ground truth caption ¢ = {wy,---,wr}, where w; de-
notes the ith word and 7 denotes the length of the caption. Define its similar images
as {(10,Cy),--+,(12,C,)} from the training dataset Dyyain = {(I1,C1),- -+, (In,Cn)}, Where
C={c1,"+-,cm}. A undirected graph G = {V, €} is composed of nodes v € V and edges
e = (v;,vj) €V x V. Node v; is represented by a set of items {n?,-- ’n'i’vi }, where n € R
or € RP¢ based on whether it is a image node or a caption node, D, and D,. denote the dimen-
sionality of the image and caption embedding spaces, and n,, denotes the number of items
of node v;. Edges e take binary values, where 0 denotes that two nodes do not connect and 1
denotes there is a connection between two nodes and messages can be passed from one node
to its neighbours.

3.1 Graph Construction

In this paper we first construct a KNN graph based on the similarity among images. We
use Karpathy’s training split of MSCOCO [24] as D;yq4in, Which contains 113,287 images
and each image has 5 captions. For each image, we use Faster-RCNN trained on the Visual
Genome dataset [21] to detect k objects, and each object is represented by a vector o; € RP»
provided by the ROI pooling layer. Finally, an image is represented by a vector 0 = % Zile 0;
and the distance between two images I, is calculated as follows: dist(I,5,) = ||61 — d2]2-
Given a candidate image Iy, we find n nearest images from D;,4;,, not including Iy itself if
it belongs to Dy4i,n. Note that each image in Dy, has m human annotations, which could
contain useful information (see Figure 1 (right)), and thus, the constructed KNN graph also
takes human annotations into account. In Figure 2, we show an example of the constructed
KNN graph, where the node distance between the candidate image Iy and the captions of
similar images is 2.
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3.2 Feature Refinement

To refine the image features, we present an attention-in-attention (AiA) model. The outer
attention is based on graph attention networks (GATSs) [37], and the inner attention is based
on self-attention [35], the structure of which is shown as “Feature Refiner” in Figure 2.
Given a KNN graph G = {V, £}, there are two types of nodes: (1) image nodes repre-
sented by /(g 1,... ), (2) caption nodes represented by cy11 12.... um}, Where Iy is the candidate
image without ground-truth captions. Following the graph construction procedure, for each
image node, we employ Faster-RCNN to detect k objects and each object is represented by a
vector o; € RP. In terms of caption nodes, we first use a bidirectional LSTM [12] to obtain
a representation of a caption, i.e., ¢; is represented by{si, . sT} where s; € RP is the jth
output of the bidirectional LSTM and 7; denotes the number of words in cl
Inner attention. Given a node v, = {n{,--- ’nnm} composed of n,, items, for the ith item,
the inner attention is computed as follows:

Z Viner(1M7); Z 0 Vi o (M5 )1 (1)

where [- - -] denotes concatenation, nj, denotes the number of attention heads, ¢ denotes the
attention weights, and aner( x) = W‘f;mmx denotes a linear transformation and h = 1,--- | ny,.
We define
h h Ty
a,l} — exp(aij) and Clh< _ qinner(nl ) kmner(n;)7 (2)

ny; h ij -
¥, exp(aj;) |/ Dier

where ¢, (x) = W(fim xand k! (x) = Wlf',mrx denote query and key functions, respec-
tively. T represents transpose and D;’;{”“’r denotes the dimensionality of the query and key
space. Note that node v; can be either an image node or a caption node.

Outer attention. Outer attention is applied to pass messages over the KNN graph. Given a

nodev,={ny,---,n; }andits neighbours i, = {v1,-- vy, }, where n,, denotes the num-
ber of items of v,, N,, represents the number of neighbours of v,, and v; = {n{, e 1’],’; bi=
vi
1,---,N,,. The outer attention is computed as follows:
~ ny
nioj = Z ijp outer np Z aljlpvouter Tlp) (3)
17’1'0: (771]‘]:17277 Vg)? (4)

where ﬁ“ denotes the message comes from the jth neighbour for the ith item of node v,,

V0o (X) = Wv}immx denotes a linear transformation. 77 denotes the aggregated message
for the ith item of node v,, and M(-) denotes the message aggregation function, such as
max(-) and gated sum function gare(xy, -+ ,x,) = Y1 ; 6(Wax;) © (Wpx;), where W,, W, are
learnable parameters. Similar to (2) the attention weights are calculated by:

Tkh

ihjp — M Cll’ld Clh — qglftler(nl ) outer(né), (5)

ijp
Z lexp( Up) \/D;Il:ler
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where q,,,,. and K., represent query and key functions, which are both linear functions,
and DZ,’:’ ¢" denotes the dimensionality of the query and key space.

Feed-forward networks. Like transformer [35], we use a feed-forward network (FFN) to
further refine the attention features:

N7 lre1 = ReLU (FEN(A? |1+ 77 [1) +1711) (6)

where 1?|; denotes the /th layer representation of the ith item in node v,. If n|o is from
Faster-RCNN or bidirectional LSTM depends on whether v, is an image node or a cap-
tion node. f)?|; and 1?|; are computed using (1) and (4), respectively. And FFN(-) =
Seq(IN,FC,ReLU,IN,FC), where IN denotes instance normalization layer and FC repre-
sents fully-connected layer. We can stack multiple layers to obtain the final representations
of the nodes.

3.3 Language Model, Training and Inference

In Figure 2, we show the structure of the Updown language model [2]. For the candidate
image Iy, the refined representation is vy|; = {n?|1,~-~ ,n,?\l} and vy = %Zf:] 77,0|l- The
bottom LSTM in the Updown model takes {ﬁo,wt,htz_ 1} as input in the rth step, where w;
is the tth word and /2 | is the (r — 1)th output of the top LSTM. The top LSTM takes
{n},Att(vo|;,h})} as input and the output A7 is applied to predict next word w; |, where
Att(-,-) denotes the attention module [2]. Note that the proposed feature refinement module
can be applied to any language model.
To train the model, the cross-entropy loss is applied, which is defined as:

T
Lxp ==Y logp(wilwii1,1), @)
=1

where w; represents the tth word of the ground-truth caption of image /. To further improve
the performance, we can directly optimize CIDEr [36] score using reinforcement learning
[30] and we define the loss as follows:

ERL = _EC*~p9 [CIDEI’(C*)] 5 (8)

where ¢* denotes the caption sampled from the model pg, CIDEr(c*) is the CIDEr score of
¢* and E[-] represent expectation. The gradient can be approximated as:

VoLrL = —(CIDEr(cx) —b) /g logpe(c”), Q)

where b represents the baseline that is able to reduce the variance of the gradient. In this
paper b = % Y. | CIDEr(c}), where ¢ is the ith sampled caption, which could be different
from ¢*. Note that in [30] b = CIDEr(c#), where ¢8 denotes the caption obtained by greedy
search, however, in the beginning of RL, CIDEr(c*) is generally lower than CIDEr(c$),
hence the samples are suppressed in most cases. In contrast, using b = n%zlr'il CIDEr(c})
can mitigate this problem.

During inference, given a test image I, we first find its n similar images from Dy, and
then use the proposed AiA module to refine the image feature, finally the language model is
applied to decode a caption from the refined feature.
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Cross-entropy loss CIDEr-D optimization
Model B4 M| R | C | S |B4| M| R]| C | S
FC [30] 30.0 | 25.2 | 529 | 96.1 - 324 | 25.6 | 54.7 | 106.6 -
Updown [2] 36.2 | 27.0 | 56.4 | 1135 | 20.3 | 36.3 | 27.7 | 56.9 | 120.1 | 214
RFNet [17] 358 | 274 | 56.8 | 1125 | 20.5 | 36.5 | 27.7 | 57.3 | 121.9 | 21.2

GCN-LSTM [46] 36.8 | 27.9 | 57.0 | 1163 | 209 | 38.2 | 28.5 | 58.3 | 127.6 | 22.0
GCN-LSTM¥ [46] 37.1 | 28.1 | 57.2 | 117.1 | 21.1 | 38.3 | 28.6 | 58.5 | 128.7 | 22.1
SGAE [45] - - - - - 38.4 | 284 | 58.6 | 127.8 | 22.1

SGAEF¥ [45] - - - - - 39.0 | 28.4 | 58.9 | 129.1 | 22.2
GCN-LSTM+HIP# [47] | 38.0 | 28.6 | 57.8 | 120.3 | 21.4 | 39.1 | 28.9 | 59.2 | 130.6 | 22.3
AoA [16] 372 | 284 | 57.5 | 1198 | 21.3 | 389 | 29.2 | 58.8 | 129.8 | 22.4

AoA* [16, 31] 36.9 - 57.3 | 1184 | 21.6 | 39.1 - 58.9 | 1289 | 22.7
FC-base' [30] 32.8 | 259|544 | 1014 | 189 | 339 | 26.2 | 55.6 | 110.7 | 19.4
Updown-base'[2] 36.4 | 27.7 | 56.6 | 113.6 | 20.7 | 37.3 | 27.9 | 57.8 | 1233 | 21.3
AoA-base’[16] 364 | 279 | 56.7 | 115.1 | 21.0 | 37.9 | 28.5 | 58.1 | 125.5 | 22.2
FC-19-c5 (ours) 337 | 263 | 549 | 1054 | 193 | 347 | 269 | 56.1 | 115.6 | 20.0

Updown-19-c5 (ours) 36.3 | 27.8 | 56.8 | 114.3 | 209 | 37.7 | 28.2 | 58.0 | 125.6 | 21.6
A0A-I9-c5 (ours) 36.3 | 28.0 | 56.9 | 1154 | 21.2 | 383 | 28.6 | 58.3 | 127.0 | 22.5
AoA-19-c5% (ours) - - - - - 39.1 | 289 | 589 | 129.3 | 22.6

Table 1: Performance on Karpathy’s test split. We use 3-layer AiA to refine image features. I
denotes ensemble model, x denotes using the publicly available pre-trained model, T denotes
the models trained under our experimental settings. 19-c5 means that for a candidate image,
we use 9 similar images and each similar image has 5 ground-truth captions.

4 Experiments

4.1 Implementation Details

We conduct all experiments on the MSCOCO dataset [24], which contains 123,287 images
(82,783 for training and 40,504 for validation) and each image has 5 human annotations.
We use Karpathy’s split to train and test the models, i.e., 113,287 image for training, 5,000
for validation and 5,000 for testing. All captions are used to build the dictionary, and we
omit the word that occurs less than 5 times, resulting in a dictionary composed of 10,369
words. For each image we use Faster-RCNN to detect 36 objects and each object is repre-
sented by a 2048-D vector, which is provided by the ROI pooling layer of Faster-RCNN.
The dimensionality of the word embedding space is 300.

In our implementation D, = 2048, D, = 1024, the number of LSTM hidden units is 1024,
and the number of captions for each similar image is m = 5. To train the model, we set the
batch size to 128 and use cross-entropy loss to train the model for 30 epochs. During training
Adam [20] optimizer with a initial learning rate 5 x 10~% and annealed by 0.8 every 3 epochs
is employed. After that, we train the model using RL for another 20 epochs using Adam with
a fixed learning rate 5 x 107°.

The evaluations metrics we use are BLEU (B-1,2,3,4) [28], METEOR (M) [7], ROUGEL
(R) [23], CIDEr (C) [36] and SPICE (S)[1].

4.2 Quantitative and Qualitative Results

Table 1 shows the performance of our proposed method on Karpathy’s test split. The models
with AiA refined features have improved performance over their counterparts that employ the
original Faster-RCNN features. For example, FC-base [30] model trained by cross-entropy
loss obtains 101.4 of CIDEr, while using AiA refined features with 9 similar images, each
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Model B-1 B-2 B-3 B-4 M R C
c5 c40 c5 c40 c5 c40 ¢S5 c40 ¢S5 c40 c5 c40 c5 c40
Updown [2] 802 952 64.1 888 49.1 794 369 685 276 367 571 724 1179 1205
RFNet [17] 804 950 649 893 50.1 80.1 38.0 692 282 372 582 731 1229 1251

GCN-LSTM [46] 80.8 952 655 893 508 803 387 69.7 285 376 585 734 1253 1265
GCN-LSTM+HIP [47] | 81.6 959 662 904 515 816 393 710 288 381 59.0 741 1279 1302
CAVP [25] 80.1 949 o647 888 50.0 79.7 379 690 281 370 582 73.1 1216 1238
SGAE [45] 80.6 950 650 889 50.1 796 37.8 687 28.1 370 582 731 1227 1255
Ao0A-19-c5(ours) 80.1 942 647 881 502 79.1 382 685 285 374 581 73.0 1235 1250

Table 2: Performance on the online MSCOCO test server.

7 GT: a small elephant stands alone in an enclosure B
~ GT:an elephant in a fenced in enclosure packed with dirt
GT: A small elephant stands alone in an enclosure

FC: a couple of elephants standing next to a fence
Updown: a baby elephant standing in front of a zoo

AoA: a baby elephant standing in front of a z00

FC-19-c5: a baby elephant walking on a dirt road
Updown-19-c5: a baby elephant standing in front of a zoo
Ao0A-19-¢5: a baby elephant walking in the dirt in a zoo

GT: a cat sitting by a window watching the rain

GT: a cat sitting on a sill looking out a window

GT: a close up of a cat on a window sill looking out the window
| FC:acatis sitting on top of a window

Updown: a black cat sitting in front of a window

AoA: a black cat looking out of a window

FC-19-c5: a cat standing in front of a window

Updown-19-¢5: a black cat sitting in front of a window
A0A-19-¢5: two black cats sitting on a window sill

GT: a couple of men riding horses down a street with tall
_ buildings

i GT: a man dressed in red riding a horse through town

. GT: people in costume riding down the road on horses

4 FC: a group of people riding horses down a city street
Updown: a man riding a horse down a city street

GT: two people holding surf boards on a beach

GT: a couple people that are walking on a beach

GT: two people with surfboards standing by the water

FC: two people walking on the beach with surfboards

| %' Updown: a couple of people walking on the beach with surfboards
AoA: two people walking on the beach with surfboards

FC-19-c5: a couple of people walking on the beach with a surfboard
Updown-19-c5: two surfers are walking on the beach with surfboards
A0A-19-c5: two surfers walking on the beach with surfboards

B AoA: two men riding horses down a city street
FC-19-¢5: a group of people riding horses down a city street
f Updown-19-¢5: a man riding a horse down a city street
A0A-19-c5: two men riding horses in a parade

Figure 3: Examples of the generated captions.

of which has 5 captions, FC-19-c5 obtains 105.4 of CIDEr, and SPICE score increases from
18.9 to 19.3 as well. In terms of CIDEr optimization, using refined features also improves
the CIDEr score of FC model by 4.4%. When it comes to other models, such as Updown'
[2] and AoA” [16], AiA refined features are capable of consistently improving CIDEr and
SPICE scores, e.g., 123.3 v.s 125.6 of CIDEr for Updown model without and with AiA
refined features, 125.5 v.s 127.0 of CIDEr for AoA model without and with AiA refined
features .

Compared with the state-of-the-art performance [45, 46, 47], our proposed model obtains
competitive performance based on CIDEr, e.g., the single AoA-19-c5 model obtains 127.0,
and GCN-LSTM [46] and SGAE [45] obtain 127.6 and 127.8, respectively. In contrast, the
proposed single model AoA-19-c5 achieves 22.5 of SPICE, which beats all the counterparts.
In terms of the ensemble model (we ensemble 4 models in this paper), our proposed ensemble
A0A-19-c¢5 model achieves 129.3 of CIDEr, which performs slightly better than the ensemble
GCN-LSTM (128.7) and SGAE (129.1). Although GCN-LSTM+HIP, which employs image
parsing trees, achieves better performance on CIDEr (130.6 v.s 129.3), our proposed model
obtains a higher SPICE score (22.6 v.s 22.3). Normally, SPICE score reflects the similarity
between the scene graph provided by a generated caption and the scene graph obtained from
human annotations, which takes the relationships between objects into account, and SPICE
has relatively strong correlation to human judgment [1]. Hence, a higher SPICE score could
indicate that a model is able to recognize relationships between objects. Looking at the
differences between the proposed model and its counterparts, AiA considers each pair of
objects in an image, the objects in the similar images and the descriptions to similar images.

'We use the publicly available code from this repository: https://github.com/ruotianluo/
self-critical.pytorch.

2We use the code released by the authors in the repository: https://github.com/husthuaan/AoANet,
but the training setting is different from [16]. Our experimental settings are in Section 4

3Note that for fair comparison, we train the baseline models and our proposed models under the same settings,
thus the metric scores could be different from those reported in the published papers [2, 16, 30]
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Model B-1 B2 B3 B4 M R C S
Updown-I1-¢5 79.1 63.2 486 36.7 278 574 1223 214
Updown-I5-¢5 80.0 643 49.7 37.8 281 580 1253 21.7
Updown-19-¢c5 80.0 642 49.6 377 282 580 1256 21.6
Table 3: The influence of using different numbers of neighbours. A 3-layer AiA is employed
to refine image features and all models are trained with CIDEr optimization. In-cm represents
using n similar images and each similar image has 7 human annotations.

Model #layers B-1 B-2 B-3 B4 M R C S

1 799 64.1 494 374 280 579 1234 215
2 799 642 49.6 378 28.1 58.0 1247 21.6
3 80.2 644 500 381 282 581 1256 217
4 799 643 500 38.1 282 582 1255 21.7
2
3

Updown-I5

79.7 639 494 376 281 579 1240 215
80.0 643 49.7 37.8 28.1 58.0 1253 21.7
4 80.0 643 497 377 281 579 1250 21.6

Table 4: The influence of stacking different numbers of AiA layers. In means only using
visual information of similar images and In-cm means using both visual and descriptive
information of similar images.

Updown-I5-c5

Thus the representation of each object is refined via considering the context and it is believed
that context could benefit object and relationship recognition [49, 50].

Our proposed model also obtains competitive performance on MSCOCO online test
server (see Table 2). Compared with SGAE [45], which employs scene graphs, the pro-
posed model achieves 123.5 of CIDEr using 5 ground-truth captions, which performs better
than the counterparts. Using 40 ground-truth captions, the proposed model performs slightly
worse than SGAE. The possible reason is that using too many visually similar images and
their corresponding human annotation could introduce noisy and ambiguous descriptions
(see Figure 1 (right)).

Figure 3 shows examples of captions generated by different models. Our proposed model
is able to generate semantically correct words that do not occur in the ground-truth captions,
e.g., “walking”, “parade”, “window sill” and “surfers”, which could slightly reduce BLUE
and CIDEr that are based on the overlap between captions. However, these words are able
to describe the images and to some extent, they could benefit scene understanding. E.g.,
looking at the word “parade”, we could imagine the scene of many people and happiness.
Also, “surfers” normally inspires us to imagine sea and beach, which could tell us more
information than the word “people”.

4.3 Ablation Study

In this section conduct ablation studies on the number of neighbours, number of layer of
AiA, and the message aggregation functions.

Different numbers of neighbours. Table 3 shows the performance of using different num-
bers of neighbours. Using 9 neighbouring images achieves 125.6 of CIDEr, which is better
than using 5 and 1 neighbouring images. In contrast, using 5 neighbours obtains the highest
SPICE score (21.7) and BLEU scores, which indicates that employing more neighbours does
not mean better performance, since using too many neighbours leads to noisy and ambiguous
descriptions. Moreover, applying more neighbours takes more time to train a model.
Different numbers of AiA layers. Table 4 shows the performance of models that use differ-
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Model B-1 B-2 B-3 B-4 M R C S
gate max gate max gate max gate max gale max gate max gate max gate max
AoA-TI 796 797 640 642 49.6 498 377 379 285 286 581 582 1253 1268 22.1 224
AoA-I5 799 796 64.1 641 499 497 38.0 379 285 285 581 581 1259 1263 223 223
AoA-19 795 79.6 641 641 498 498 379 37.8 285 285 58.0 580 1257 1254 224 222
AoA-Il-c5 797 797 642 643 499 500 381 381 286 285 582 582 1264 1263 223 222
AoA-I5-c5 798 800 643 643 499 498 380 378 286 285 582 581 1265 1262 223 223
AoA-I9-c5 797 799 643 643 501 499 383 380 286 285 583 582 1270 1256 225 22.1

Table 5: The influence of message aggregation functions.

ent numbers of AiA layers. Stacking more AiA layers could improve the performance e.g.,
the 1-layer AiA obtains 123.4 of CIDEr, while the 4-layer AiA achieves 125.5. Interestingly,
using a 4-layer AiA slightly reduces CIDEr and SPICE, which could be because stacking
more graph attention layers could lead to over smoothing [22], i.e., the representations of
nodes tend to be similar, hence, the nodes could become less distinguishable. In addition,
stacking too many AiA layers is time-consuming and costs more computational resources.
Different message aggregation functions. Message aggregation function plays an impor-
tant role in graph neural networks [22]. In this paper we explore two aggregation functions
(1) gated aggregation gate(xy,--- ,x,) = Y, 6(Wax;) © (Wpx;), where W,, W, are learn-
able parameters, o(+) is sigmoid function and (2) maximum aggregation max(xy,--- ,x,) =
MP(xy,- - ,x,), where MP denotes max-pooling operation. Table 5 shows the performance
of models that use different aggregation functions. The maximum aggregation function could
benefit the models that employ fewer neighbours, e.g., AoA-I1 obtains 126.8 of CIDEr using
maximum aggregation, while it gradually decreases to 125.4 with the increase of neighbours.
In contrast, using gated aggregation function has a different trend: the performance improves
with the increase of neighbours, which is because gated aggregation function introduces
more learnable parameters, thus it is able to model more complicated graphs.

5 Conclusion

In this paper we proposed a framework that is able to employ visually similar images for
image captioning, as well as an attention-in-attention (AiA) model to refine the candidate
image features using the information from its neighbours, which significantly improves the
baseline performance. In the future, one possible research direction is exploring different
methods to construct KNN graphs, such as using semantic similarity between images. Fur-
thermore, using KNN graphs and graph attention mechanism could be time-consuming, thus
another possible direction could be to speed up the model. In addition, hubness is com-
mon in KNN graphs, which could lead to lack of distinctiveness of the generated captions.
Therefore, another possible research direction could be reducing hubness to generate more
distinctive captions.
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