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Overview
This supplementarial material is organized as follows:
1. Results on cross-prompt and multi-prompt adaptation is

discussed to show the advantages of the unified prompt-
based counting;

2. More details about the three components in the proposed
prompt-based counting model are presented;

3. The pseudo-code is presented to show the whole compu-
tation process of fixed-point loss in contrastive training.

4. The detailed results in ablation studies.
5. Additional visualizations of the proposed method are

presented to showcase its advantages and disadvantages.

Cross/Multi-Prompt Adaptation
Converting different types of prompts into the same repre-
sentation, prompt masks, offers two additional advantages:
(a) When new types of prompts are introduced, we can
seamlessly transform them into prompts and directly apply
them in our model without requiring training; (b) This ap-
proach enables us to combine multiple prompts for counting
the object of interest.

To showcase the first advantage, we incorporate an ad-
ditional prompt type, namely instance mask prompts, for
prompt-based counting without requiring extra training. The
instance mask is generated by converting the box annota-
tions into instance masks using the SAM method (Kirillov
et al. 2023). The results are presented in Table S1. The in-
stance prompts yield comparable outcomes to box-guided
training, as the prompts originate from box annotations.
However, when using instance prompts, the estimation er-
rors are slightly lower than the results obtained from box
annotations, owing to the more precise representation pro-
vided by instance masks.

Regarding multiple prompts, we present the results in Ta-
ble S2. Overall, the performance remains consistent with
the results obtained using a single type of prompt. How-
ever, when the text prompt is combined with other prompts,
such as box or point prompts, its performance improves.
The original MAE and MSE of the text prompt are 16.81
and 105.83, respectively. These values decrease to 16.71 and
105.80 when the box prompt is added. Meanwhile, the MAE
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prompts train validation test
MAE MSE MAE MSE

box
w/

16.87 59.45 16.68 105.08
text 16.92 58.92 16.81 105.83

point 17.16 59.38 15.86 103.27
instance w/o 16.74 59.28 16.58 104.79

Table S1: Cross-prompt adaptation.

box text point validation test
MAE MSE MAE MSE

✓ ✓ 16.89 58.91 16.71 105.80
✓ ✓ 16.76 59.36 16.50 104.79

✓ ✓ 16.96 59.01 16.78 105.79
✓ ✓ ✓ 16.73 58.88 16.64 105.75

Table S2: Counting with Mutiple types of prompts.

and MSE decrease to 16.78 and 105.79 when combined with
point prompts.

Model Structure
Our prompt-based counting model coonsists of three main
components: an image backbone, the cross-attention mod-
ule, and the density predictor, as illustrated in Figure 2 of
the main paper.

Backbone & Image Feature. The backbone utilize the
first four blocks of ResNet-101 (He et al. 2016) as the back-
bone, the image feature can be represented as:

F = G
([

F 1
8
, U2

(
F 1

16

)]
, ΘG

)
, (S1)

where G is a conv 3×3 layer with parameters ΘG , and U2
represents bilinear interpolation with a scale factor of 2. The
inputs to G, denoted as F 1

8
and F 1

16
, are feature maps ex-

tracted from the last two blocks in the backbone. Their sub-
scripts indicate the downsampling rate compared to the in-
put. F has the same resolution with F 1

8
.

Cross Attention & Density Feature. The aim of cross at-
tention is to let the prompt token t ∈ RC communicate with
the flattened feature F ∈ RN×C , and then generate density
feature accordingly. Specifically, we useF to generate query
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Figure S1: The pipline of cross-attention module.
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Figure S2: The pipline of density predictor.

embedding, and use t to generate key and value embeddings:

Q = FW q, k = W kt, v = W vt (S2)

in which W q ∈ RC×C′
, W k ∈ RC′×C , and W v ∈ RC′×C

are learnable parapeters to perform cross attention. Prior at-
tention models use softmax to compute the weights for
each value embedding. However, there is only one token so
that the result of softmax would wlways be one, contrast
to the movetation of weight. Thus, we replace the softmax
with Sigmoid function σ(x) = 1

1+e−x , resulting the follow-
ing way to generate density features:

F ′ =M(S⊤v), S = σ(Qk) ∈ RN
+ , (S3)

where M is a linear projection to transform the attention
results into density features, denoted as F ′. The visualized
pipline is displayed in Figure S1.

Density Predictor. We utilize the identical density pre-
dictor released in SPDCN (Lin et al. 2022), benefiting from
its straightforward yet effective performance. As illustrated
in Figure S2, the density predictor is composed of three
combined layers of conv 3×3 and ReLU. Before reaching
the final convolutional layer, a pixel shuffle layer with
scale factor of 8 is employed to upscale the density features,
aligning them with the resolution of the input image.

Pseudo Code of Contrastive Training
Algorithm S1 summarizes the procedure for computing

the fixed-point loss under the contrastive training scheme.
At the beginning, d(0)

i and d
(0)
j are initilized with mi and =

0mj
respectively. Subsequently, the fixed-point estimation

is performed iteratively.
In the t-th iteration, we first compute the prompt token

t(t+1) based on both the positive and negative prompt masks,
d
(t)
i and d

(t)
j . Following this, the positive and negative den-

sity map are updated via the function D with parameters θ,

Algorithm S1: Contrastive Training
Input: Postive sample (F i,mi,d

′
i), negative sample

(F j ,mj ,d
′
j), and the number of iteration T .

Output: Contrastive fixed-point loss L̂ij .
1: Initialize d

(0)
i ←mi and d

(0)
j ← 0mj

.
2: for t← 0 to T − 1 do
3: {Detach d

(T−1)
i and d

(T−1)
j from the computation

graph according to (17) in the main paper.}
4: if t = T − 1 then
5: d

(t)
i ← DETACH

(
d
(t)
i

)
.

6: d
(t)
j ← DETACH

(
d
(t)
j

)
.

7: end if
8: Comprehensive token t(t+1) ← F⊤

i d
(t)
i +F⊤

j d
(t)
j

∥d(t)
i ∥1+∥d(t)

j ∥1

.

9: The positive density map d
(t+1)
i ← Dθ(F i, t

(t+1)).
10: The negative density map d

(t+1)
j ← Dθ(F j , t

(t+1)).
11: end for
12: The token at infinity t(∞) ← F⊤

i d′
i

∥d′
i∥1

.

13: The positive density at infinity d
(∞)
i ← Dθ(F i, t

(∞)).
14: The negative density at infinity d

(∞)
j ← Dθ(F j , t

(∞)).

15: The positive fixed-point loss L̂i ←
∥∥∥d(∞)

i − d′
i

∥∥∥ +∥∥∥d(T )
i − DETACH

(
d
(∞)
i

)∥∥∥2.

16: The negative fixed-point loss L̂j ←
∥∥∥d(∞)

j

∥∥∥ +∥∥∥d(T )
j − DETACH

(
d
(∞)
j

)∥∥∥2
17: return L̂ij ← L̂i + L̂j .

as described in (9) of the main paper. Here D comprises the
cross-attention module in Figure S1 and the density predic-
tor in Figure S2. Note that both density maps are detached
from the computation graph before the final iteration.

To compute the fixed-point loss, we also predict the cor-
responding density map with the token at infinity, t(∞). The
final loss function is computed for both the positive and neg-
ative samples. The distinction lies in that the prediction for
the positive component should align with the ground truth,
while the prediction for the negative component should ap-
proach an all-zero density map. It is worth noting that d(∞)

is detached in the finite loss calculation to prevent degener-
ate solutions where both d(T ) and d(∞) converge towards
zero (Chen and He 2021).

Detailed Results in Ablation Studies
In the main paper, we only present the average MAE/MSE
across three types of prompts to conserve space. Here, we
provide the detailed corresponding data. Table S3 compares
the methods for generating text prompt masks; Table S4
presents the results while comparing fixed-point loss with
L2 loss; Table S5 discusses the enhancements achieved by
different components in fixed-points; and Table S6 provides



Mask box (val) text (val) point (val)
MAE MSE MAE MSE MAE MSE

cosine 18.55 69.32 20.59 79.30 18.46 69.70
softmax 16.87 59.45 16.92 58.92 17.16 59.38

Mask box (test) text (test) point (test)
MAE MSE MAE MSE MAE MSE

cosine 16.97 108.13 17.84 108.77 16.12 105.82
softmax 16.68 105.08 16.81 105.83 15.86 103.27

Table S3: Comparison of text prompt mask generation.

loss function prompt validation test
MAE MSE MAE MSE

L2
box 18.84 66.96 17.26 107.62
text 18.37 65.49 16.83 105.83

point 20.07 69.52 17.55 106.03

fixed-point
box 16.87 59.45 16.68 105.08
text 16.92 58.92 16.81 105.83

point 17.16 59.38 15.86 103.27

Table S4: Comparison between MSE and fixed-point loss.

the N-MAE and N-MSE values for different prompts.

More Visualization
In this section, we also present more visualizations of the
proposed method. In Figure S3, we provide some counting
examples with text prompts. It demonstrates that our model
can generate accurate density maps even when the given im-
age contains multiple types of objects. For convenience, we
use d(t) to denote the prediction in the t-th iteration. The
visualization shows that d(1) consistently predicts a lower
count than d(2). When compared with d(1), the count of d(2)

is closer to the ground truth.
In Figure S4, we illustrate some failure cases. In the first

row of Figure S4, the minimum repetitive unit is a single
lens. However, the object of interest, sunglasses, naturally
has two lenses, doubling the repetitive unit. This discrepancy
causes the model to predict a count that is twice the ground
truth. In the second row of Figure S4, two types of pills with
competely different appearances and shapes are presented.
The model only counts one of them, while the other one is

Prompt infinity finity validation set test set
MAE MSE MAE MSE

box

L∞ – 27.08 72.56 30.06 111.42
– LT ′ 20.67 68.34 17.29 107.67
L∞ LT ′ 16.87 61.86 16.46 106.99
L∞ LT 16.87 59.45 16.68 105.08

text

L∞ – 27.93 74.35 30.82 110.88
– LT ′ 21.07 70.71 17.31 106.90
L∞ LT ′ 16.99 61.47 16.71 107.32
L∞ LT 16.92 58.92 16.81 105.83

point

L∞ – 19.73 68.76 20.03 108.32
– LT ′ 20.64 67.13 17.53 107.67
L∞ LT ′ 17.54 63.10 15.69 103.42
L∞ LT 17.16 59.38 15.88 103.27

Table S5: Ablation study on different combinations of infin-
ity and finity part in fixed-point loss.

contrastive
training prompt validation set test set

N-MAE N-MSE N-MAE N-MSE

w/o
box 38.27 73.37 50.91 88.28
text 37.89 70.08 49.85 88.34

point 38.12 75.81 50.68 85.67

w/
box 1.90 17.57 3.85 14.84
text 1.83 17.29 3.90 15.03

point 1.97 16.62 3.92 15.70

Table S6: Ablation study on contrastive training.

recognized as irrelevant object.
Figure S5 showcases two examples of counting with dif-

ferent prompts. These diverse prompts also exhibit varying
levels of performance, but the estimation errors remain con-
sistent across the entire dataset.
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Figure S3: Examples of counting with text prompts.
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Figure S4: Typical failure cases.
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Figure S5: Examples of counting with different types of prompts.


