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Abstract

Recent deep learning-based multi-view people detection
(MVD) methods have shown promising results on existing
datasets. However, current methods are mainly trained and
evaluated on small, single scenes with a limited number of
multi-view frames and fixed camera views. As a result, these
methods may not be practical for detecting people in larger,
more complex scenes with severe occlusions and camera cal-
ibration errors. This paper focuses on improving multi-view
people detection by developing a supervised view-wise con-
tribution weighting approach that better fuses multi-camera
information under large scenes. Besides, a large synthetic
dataset is adopted to enhance the model’s generalization a-
bility and enable more practical evaluation and comparison.
The model’s performance on new testing scenes is further im-
proved with a simple domain adaptation technique. Experi-
mental results demonstrate the effectiveness of our approach
in achieving promising cross-scene multi-view people detec-
tion performance.

Introduction

Multi-view people detection (MVD) has been studied to
detect people’s locations on the ground of the scenes vi-
a synchronized and calibrated multi-cameras, which could
be used for many different applications, such as public safe-
ty, autonomous driving, efc. Recent multi-view people de-
tection methods are mainly based on deep learning, which
train convolution neural networks (CNNs) with synchro-
nized multi-view images as input and ground-plane occu-
pancy map as output, and have achieved promising results
on existing datasets, such as Wildtrack (Chavdarova et al.
2018) and MultiviewX (Hou, Zheng, and Gould 2020).
However, the current DNNs-based multi-view people de-
tection methods are trained and evaluated only on single s-
mall scenes (see Figure 1) with limited numbers of frames
and fixed camera views. These datasets are collected on s-
mall scenes with only hundreds of frames for training and
testing and several fixed camera views (7 in Wildtrack and
6 in MultiviewX). In summary, the weaknesses of current
methods are 3 folds: 1) The methods are evaluated on small
scenes (about 20m x 20m), while real-world scenes could be
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Figure 1: The scene area comparison of CVCS, CityStreet,
Wildtrack and MultiviewX. The scene size of the latter two
datasets is quite smaller than the first two.

much larger, with more severe occlusions and camera cal-
ibration errors; 2) The methods are evaluated on dataset-
s containing limited frames and fixed camera views (e.g.,
360 for training and 40 for testing, and 7 views in Wild-
track dataset), which could not validate and compare differ-
ent methods thoroughly; 3) The methods cannot generalize
to other scenes well since they are trained on the same single
scenes, and potentially overfitted on the specific camera ar-
rangement, making them not generalized to novel scenes and
camera layouts. These settings in current multi-view detec-
tion methods should be adjusted to better validate and com-
pare different multi-view detection methods.

In this paper, we focus on the multi-view people detection
task on large scenes (eg. CVCS and CityStreet, see Figure 1)
with more occlusions and camera calibration errors, as well
as the model’s generalization ability to novel unseen scenes
in testing. We propose the supervised view-wise contribu-
tion weighting method to fuse multi-camera information on
the scene ground plane based on each view’s prediction on
the ground plane space. As shown in Figure 2, the proposed
supervised view-wise contribution weighting MVD model
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Figure 2: The pipeline of the proposed view-wise contribution weighting method, which consists of 4 stages: Single-view feature
extraction and projection, Projected single-view decoding, Supervised view-wise contribution weighted fusion, and Multi-view
feature decoding. First, camera view features are extracted from the shared feature extraction net, and then they are projected
to the ground plane. Second, each view’s projected feature Fj is fed into a decoder to predict the view’s people location map V;
on the ground, and the loss is £, whose ground-truth is obtained from the scene ground-truth V*. Third, each view’s people
location map prediction V; is fed into a subnet C and then weighted across all camera views to obtain weight maps W; for
multi-view fusion. And the predicted weight maps W; are used to fuse multi-view features F; in a weighted summation way.
Finally, the fused multi-view feature F' is decoded to predict the whole scene’s people location map, and the loss is /5.

consists of 4 stages: Single-view feature extraction and pro-
Jjection, Projected single-view decoding, Supervised view-
wise contribution weighted fusion, and Multi-view feature
decoding. First, the features of each view are extracted and
then projected to the ground plane in a shared subnet to han-
dle possible different numbers of camera views. The project-
ed single-view decoding subnet predicts each view’s people
location map contained by the view on the ground plane in
a supervised way, which could be used as the contribution
of the current view to the final result. And thus the predic-
tions are further fed into a subnet and weighted across all
camera views to obtain weight maps for multi-view fusion
in the next step. Then the predicted weight maps are used
to fuse multi-view features in a weighted summation way.
Finally, the fused multi-view features are decoded to predict
the whole scene’s people location map.

Besides, in the experiments, instead of evaluating the
multi-view people detection methods on small multi-view
datasets, we adopt 2 large multi-view datasets, CitySteet
(Zhang and Chan 2019) and CVCS (Zhang, Lin, and Chan
2021), for a more challenging and thorough method com-
parison and validation. Furthermore, a simple domain adap-
tation technique is also adopted to further improve the mod-
el’s cross-scene performance on testing scenes. In summary,
the main contributions of our paper are as follows.

e To our knowledge, this is the first study on large-scene
multi-view people detection task with better generaliza-
tion ability to novel unseen testing scenes with different
camera layouts.

e We propose a new multi-view people detection method,
which considers the supervised view-wise contribution
weighting for better multi-view feature fusion.

e The proposed method’s cross-scene multi-view people
detection performance is promising compared to previ-

ous methods trained on the same single scenes, extending
multi-view people detection to more practical scenarios.

Related Work
Multi-view people detection

Traditional methods. Multi-view people detection has
been studied for dealing with heavy occlusions in crowd-
ed scenes. Usually, information from synchronized and cal-
ibrated multi-camera views is combined to provide predic-
tions for the whole scene. Early detection methods try to
detect each person in the images by extracting hand-crafted
features (Viola and Jones 2004; Sabzmeydani and Mori
2007; Wu and Nevatia 2007) and then training a classifier
(Joachims 1998; Viola, Jones, and Snow 2005; Gall et al.
2011) using the extracted features. Fleuret et al. (2007) pro-
posed the Probabilistic Occupancy Map (POM) to indicate
the probability of people appearing on the grid of the scene
ground. Traditional methods rely on hand-crafted features
and background subtraction preprocessing, which limit their
performance and application scenarios.

Deep learning methods. With the development of ge-
ometric deep learning, recent learning-based MVD meth-
ods have achieved great progress. Chavdarova and Fleuret
(2017) proposed to use CNNss for feature extraction and con-
catenate multi-view features to predict the occupancy map.
However, the features from different camera views are not
aligned before further fusion in the model, resulting in lim-
ited performance. Hou, Zheng, and Gould (2020) used cam-
era calibrations to perform a perspective transformation to
the ground for feature fusion and achieved state-of-the-art
performance. Later work Song et al. (2021) improved the
performance further by using multi-height projection with
an attention-based soft selection module for different height
projection fusion. Hou and Zheng (2021) adopted the de-
formable transformer framework (Zhu et al. 2020) and pro-



posed a multi-head self-attention based multi-view fusion
method. Qiu et al. (2022) proposed a data augmentation
method by generating random 3D cylinder occlusions on the
ground plane to relieve model overfitting.

Overall, the existing multi-view people detection meth-
ods are trained and evaluated on single small scenes with
only hundreds of multi-view frames and several fixed cam-
era views, such as in Wildtrack (Chavdarova et al. 2018)
and MultiviewX (Hou, Zheng, and Gould 2020). This is not
suitable for better validating and comparing different multi-
view people detection methods, not to mention for general-
izing to novel new scenes with different camera layouts, or
other more practical real-world application scenarios. Qiu
et al. (2022) noticed the issue and tried to solve the problem
from the aspect of data augmentation, but still evaluated the
methods only on small scenes. Besides, in contrast to SHOT
(Song et al. 2021) or MVDeTr (Hou and Zheng 2021) which
uses self-attention weights, the proposed method estimates
the view fusion weights in a supervised way without extra
labeling efforts, resulting in more stable performance.

Other multi-view vision tasks

Multi-view counting. Multi-camera views can be com-
bined to further improve the single-image counting (Cheng
et al. 2019a; Huang et al. 2020; Zhang et al. 2022; Cheng
et al. 2022, 2019b) performance for large scenes. Similar to
multi-view people detection, traditional multi-view count-
ing methods also rely on hand-crafted features and back-
ground subtraction techniques (Viola and Jones 2004; S-
abzmeydani and Mori 2007; Chan and Vasconcelos 2012;
Chen et al. 2012; Paragios and Ramesh 2001; Marana et al.
1998; Lempitsky and Zisserman 2010; Pham et al. 2015;
Wang and Zou 2016; Xu and Qiu 2016). These traditional
methods’ performance is limited by the weak feature rep-
resentation power and the foreground/background extrac-
tion result. To deal with the issues of traditional methods,
deep learning methods are explored in the area. Zhang and
Chan (2019, 2022b) proposed the first end-to-end DNNs-
based framework for multi-view crowd counting and a large
city-scene multi-view vision dataset CityStreet. Zhang and
Chan (2020, 2022a) proposed to solve the problem in 3D
space with the 3D feature fusion and the 3D density map
supervision. Zhang, Lin, and Chan (2021) proposed a large
synthetic multi-view dataset CVCS to handle the cross-view
cross-scene setting, and the method is applied to novel new
scenes with domain transferring steps. Zheng, Li, and Mu
(2021) improved the late fusion model (Zhang and Chan
2019) by introducing the correlation between each pair of
views. Zhai et al. (2022) proposed a graph-based multi-view
learning model for multi-view counting. Multi-view count-
ing methods mainly focus on predicting crowd density maps
on the ground and the people count but with relatively weak
localization ability.

Multi-camera tracking. Multi-camera tracking can track
the objects under multi-cameras to deal with occlusions or
lighting variations (Iguernaissi et al. 2019). The existing
methods can be categorized into centralized methods (over-
lapped) (Chavdarova et al. 2018; Fleuret et al. 2007; Xu
et al. 2016; You and Jiang 2020) and distributed methods

(non-overlapped) (Patino and Ferryman 2014; Taj and Cav-
allaro 2011; Yang et al. 2022). Here, we mainly review cen-
tralized methods with overlapping camera views. Central-
ized methods consist of 3 steps: camera view people detec-
tion/feature extraction, data fusion and tracking. You and
Jiang (2020) followed the steps and proposed a real-time
3D multi-camera tracking by fusing 2D people location pre-
dictions on the ground plane and then tracking each person
from the fused ground-plane maps. Nguyen et al. (2022) pro-
posed to match the multi-camera trajectories by solving a
global lifted multicut problem.

In summary, the model generalization ability has been ex-
plored in other multi-view vision tasks, such as using large
synthetic datasets in training. But in the area of multi-view
people detection, the methods are only evaluated on the
same single scenes due to limited data, which reduces the
model generalization potential under real-world application
scenarios. And no methods have tried estimating the view
weights for fusion with the guidance of single-view ground-
plane ground-truth, requiring no extra labels.

Method

In this section, we describe the proposed supervised view-
wise contribution weighting multi-view detection method,
which consists of 4 stages (see Figure 2): Single-view fea-
ture extraction and projection, Projected single-view decod-
ing, Supervised view-wise contribution weighted fusion, and
Multi-view feature decoding. We first introduce the whole
model’s subnets and modules, where the details about the
proposed supervised view-wise contribution weight module
are presented. Finally, we describe how we generalize the
trained model to novel new scenes.

Single-view feature extraction and projection

We choose ResNet (He et al. 2016)/VGG (Simonyan and
Zisserman 2014) as the feature extraction backbone net for
the multi-view people detection model. To handle the vari-
able numbers of camera views in the training and testing
scenes, the feature extraction subnet is shared across all in-
put camera views. After feature extraction, each view’s fea-
tures are projected to the scene ground plane for further pro-
cessing via a projection layer with camera calibrations based
on spatial transformation network (Jaderberg et al. 2015).
The projection layer implemented in our model could be
used with variable camera parameters instead of a fixed set
of ones to handle camera view number change across differ-
ent scenes.

Projected single-view decoding

We use a subnet to obtain each view’s people location pre-
diction on the ground plane based on the projected single-
camera view features, which is shared across all input cam-
era views to handle the possible variable camera views. The
supervision for the decoding subnet training is the scene lo-
cation map consisting of people that can be seen within the
corresponding camera view. Since the decoding result only
contains people that can be seen in the field-of-view of each
camera (as shown in Figure 3), the prediction can be used



View 1 GT

View 2 GT View 3 GT Scene GT

Figure 3: “View GT’ is the ground-truth for each view in pro-
jected single-view decoding, which is the people occupancy
map on the ground that can be seen by the corresponding
view, and ‘Scene GT’ stands for the ground-truth for the w-
hole scene of CityStreet. The lines in the “View GT’ indicate
the field-of-view region of the camera view.

as the confidence of the view on the corresponding regions
in the final result. So, we use the single-view ground-plane
prediction results to fuse the multi-camera information in the
next step. Besides, the projected single-view decoding mod-
ule also provides an extra constraint on the training of the
model for the feature extraction module. Thus, the feature
extracted from the multi-view images should be effective in
the single-view decoding after projection.

The projected single-view decoding loss ¢, can be cal-
culated as follows. Denote n as the camera view number,
i =20,1,...,n — 1 stands for the index of each view, and the
prediction and ground truth for each view are V; and Vigt,
respectively.

1 1
b, =~ Vi—V3 ==Y Vi V& eMl3. (
n%ll flc nill JTOMll3. (1)

V9" = V9* @ M; means each view’s ground-truth in the pro-
jected single view is the scene-level ground-truth V¢ mul-
tiplied by the view’s field-of-view mask M; on the ground.

Supervised view-wise contribution weighted fusion

We propose the supervised view-wise contribution weighted
fusion approach for fusing multi-camera information. First,
each view’s scene ground-plane prediction result V; is fed
in the shared subnet C to predict the weight map W; for
each camera view. Then, the weight maps {WW; } for all views
are normalized to make sure the sum of the weights for all
camera views of one pixel on the scene ground-plane map
equals to 1, denoted as W;. In addition to that, the region-
s that cannot be seen by a camera view are assigned to 0
weight under that view. Especially in the normalization pro-
cess, these regions’ weights are not calculated in the final
result. Therefore, the view-wise field-of-view mask M; is
multiplied with each camera view’s initial weight map W;
before the normalization. The process of the view-wise con-
tribution weight maps can be calculated as follows.

. WZ ® M,;

=——"""*
Y Wi@M;+o

where o is a small value to avoid the zero denominator issue

in the equation when a region pixel cannot be seen by any
input camera views.

Wi =C(Vi), W; 2
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Figure 4: The domain adaptation approach used in our
method for generalizing to novel new scenes.

After that, each camera view’s projected features F; are
multiplied with the view-wise contribution weight maps W,
and summed together to obtain the scene-level feature rep-
resentation F' = ZZ F; @ W;. To the best of our knowl-
edge, this is the first work that uses the supervised view-wise
contribution on the scene ground-plane map as a weight-
ing method for fusing multi-camera view information in the
field, which provides more guidance of the people contained
in each view. Compared to other weighted methods, SHOT
(Song et al. 2021) or MVDeTr (Hou and Zheng 2021), the
proposed method is more stable on different datasets (see
experiment section for more details).

Multi-view feature decoding

After obtaining the fused feature representation F' for multi-
cameras, F'is fed in a decoder for predicting the scene-level
prediction V of the people occupancy map on the ground.
Note this decoder is different from the one used for project-
ed single-view decoding because they are targeting differen-
t functions, one for decoding each camera view’s features,
and the other one for the whole scene’s feature represen-
tation. The mse loss is also used in the multi-view feature
decoding, denoted as ¢; = mse(Vs, V9%). And together with
the projected single-view decoding loss ¢,,, the model’s loss
£ can be summarised as ¢ = ¢, + M\, where X is used to
adjust the two decoding losses’” importance in the training.

Generalization to new scenes

Our proposed supervised view-wise contribution weighting
method is trained on a large synthetic multi-view people
dataset CVCS (Zhang, Lin, and Chan 2021), which can be
applied to new scenes with promising results by slightly
finetuning the model. To further reduce the large domain gap
between the training scenes and testing new scenes, we also
use a domain adaptation method to improve the performance
(see Figure 4) after finetuning the trained model on the new
scenes with limited labeled data. In particular, we add a dis-
criminator in the trained model to reduce the gap between
the training scene features and testing scene features. In the
finetuning stage, we first trained the model by using 5% of
the new scene training set images, and then both the training
synthetic images and the testing new scene images are fed
into the proposed model. Finally, both kinds of features are



Dataset Frames Scene Resolution Counts Views Area (m?)

CVCS 200k/80k 23/8 1920 %1080 90-180 60-120 90x80
CityStreet  300/200 1 2704x1520 70-150 3 5872
Wildtrack ~ 360/40 1 1920x1080 20 7 12x36
MultiviewX 360/40 1 1920x1080 40 6 16x25

Table 1: Comparison of multi-view people datasets. ‘/* s-
tands for the training and testing statistics.

classified by the discriminator. The loss in the finetuning in-
cludes the new scene multi-view detection loss, the synthet-
ic multi-view detection loss, and the discriminator classifi-
cation loss. In experiments, the model’s cross-scene multi-
view detection performance is promising compared to the
previous methods trained on the same single scenes, which
can extend the multi-view people detection to more general
application scenarios.

Experiments and Results

In this section, we first introduce the datasets used in the
experiments and then present the experiment settings, in-
cluding the comparison methods, the implementation detail-
s, and evaluation metrics. Finally, we show and compare the
experiment results, including the multi-view people detec-
tion performance on various datasets and the ablation study
on the proposed view-wise contribution weighting module.

Datasets

We introduce 4 datasets used in the multi-view people detec-
tion, including CVCS (Zhang, Lin, and Chan 2021), CityS-
treet (Zhang and Chan 2019), Wildtrack (Chavdarova et al.
2018) and MultiviewX (Hou, Zheng, and Gould 2020), a-
mong which the latter 2 datasets are relatively smaller in
the scene size (see dataset comparison in Table 1). CVCS is
a synthetic multi-view people dataset, containing 31 scenes,
where 23 are for training and the rest 8 for testing. The scene
size varies from about 10m * 20m to 90m x80m. Each scene
contains 100 multi-view frames. The ground plane map res-
olution is 900 x 800, where each grid stands for 0.1 meter
in the real world. In the training, 5 views are randomly se-
lected for 5 times in each iteration per frame of each scene,
and the same view number is randomly selected for 21 times
in evaluation. CityStreet is a real-world city scene dataset
collected around the intersection of a crowded street. The
scene size of the dataset is around 58m x 72m. The ground
plane map resolution is 320x384. Wildtrack is a real-world
dataset recorded on the square of a university campus. The
ground plane map resolution 120 x 360, where each grid s-
tands for 0.1m in the real world. MultiviewX is a synthetic
dataset for multi-view people detection. The ground plane
map resolution is 250 x 160, where each grid also stands for
0.1m in the real world.

Compared to Wildtrack and MultiviewX, CVCS and C-
ityStreet contain more scenes, more camera views and more
images, which are more suitable for validating multi-view
people detection tasks in more practical environments. Thus,
unlike other methods, we mainly evaluate on larger datasets
CVCS and CityStreet.
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Figure 5: The result visualization of the method: camera
view input, single-view prediction, view weight map and the
corresponding ground-truth and prediction results.

Backbone | Method MODA  MODP P R. Fl
ResNet With textbf46.2 textbf78.4 81.2 59.1 68.4
Without  36.6 71.0  79.4 49.4 60.9
VGG With 39.9 719  85.7 47.9 61.5
Without ~ 38.1 771  86.3 453 59.4

Table 3: The ablation study on whether the proposed super-
vised view-wise contribution weighted fusion is used or not
(with/without) on CVCS dataset.

Experiment settings

Comparison methods. We compare the proposed view-
wise contribution weighting method with several state-of-
the-art multi-view people detection methods: MVDet (EC-
CV 2020) (Hou, Zheng, and Gould 2020), SHOT (ICCV
2021) (Song et al. 2021), MVDeTr (ACM MM 2021) (Hou
and Zheng 2021), and 3DROM (ECCV 2022) (Qiu et al.
2022). We run these four latest multi-view people detection
methods on large multi-view people datasets CVCS and C-
ityStreet, using the code implemented by the correspond-
ing paper authors. We also compare with other methods,
such as RCNN (Xu et al. 2016), POM-CNN (Fleuret et al.
2007), DeepMCD (Chavdarova and Fleuret 2017), DeepOc-
c. (Baqué, Fleuret, and Fua 2017), and Volumetric (Iskakov
et al. 2019), on Wildtrack and MultiviewX.
Implementation details. The proposed model is based on
ResNet/VGG backbone. For model setting, the layer setting
of feature extraction and decoders for projected single-view
decoding and multi-view decoding can be found in the sup-
plemental. For the view-wise contribution weighted fusion,
the single-view predictions are fed into a 4-layer subnet:
[3x3x1%256, 3x3x256x256, 3x3x256x128, 3x3x128%1].
The map classification threshold is 0.4 for all datasets, and
the distance threshold is 1m (5 pixels) on CVCS, 2m (20
pixels) on CityStreet, and 0.5m (5 pixels) on MultiviewX
and Wildtrack. As to the model training, a 3-stage training is
used: First, the 2D counting task is trained as the pretraining
for the feature extraction subnet; Then, the projected single-
view decoding subnet is trained after loading the pretrained



Dataset CVCS CityStreet

Method | MODA MODP Precision Recall F1_score Rank | MODA MODP Precision Recall F1_score Rank | Avg. Rank
MVDet 36.6 71.0 794 494 609 4 446  65.7 79.8 59.8 684 5 4.5
SHOT 450 774 83.6 559 67.0 2 535 724 91.0 594 718 4 3
MVDeTr| 39.8 84.1 95.3 449 610 3 583 74.1 92.8 63.2 752 3 3
3DROM 339 739 79.5 422 551 5 60.0 70.1 82.5 762 79.2 1 3
Ours [ 462 784 81.2 59.1 68.4 1 [ 550 700 81.4 712 76.0 2 ] 1.5

Table 2: Comparison of the multi-view people detection performance on the larger datasets CVCS and CityStreet using 5
metrics. The distance threshold is 1m on CVCS (5 pixels on the ground plane map), and 2m on CityStreet (20 pixels on the
ground plane map). Overall, all previous methods do not perform well on the 2 large datasets compared to Wildtrack and
MultiviewX (see in Table 6). The proposed method ranks the best among all methods according to the average rank on the 2

datasets.

feature extraction subnet; Finally, the projected single-view
decoding subnet and the multi-view decoding subnet are
trained together, where the loss term weight A = 1. We fol-
low other training settings as in MVDet.

Evaluation metrics. We use 5 metrics to evaluate and
compare the multi-view people detection methods: Multiple
Object Detection Accuracy (MODA), Multiple Object De-
tection Precision (MODP), Precision, Recall and F1_score.
We calculate true positive (TP), false positive (FP), and
false negative (FN) first to compute the metrics. MODA =
1—(FP+FN)/(TP+FN), shows the detection accuracy.
MODP = (3 (1 —d[d < t]/t))/T P, shows the precision
of detection, where d is the distance from a detected per-
son point to its ground truth and ¢ is the distance threshold.
Precion = TP/(FP +TP), Recall =TP/(TP+ FN),
and F'1_score = 2Precion x Recall /(Precion + Recall),
where F'1_score is a balance of Precion and Recall for de-
tection performance evaluation. Additionally, the Rank and
the average rank (Avg. Rank) of each method’s performance
on CVCS and CityStreet are also presented to compare dif-
ferent methods’ overall performance.

Experiment results

We show the performance on CVCS and CityStreet in Ta-
ble 2. Overall, compared to results on Wildtrack and Mul-
tiviewX (see in Table 6), the performance on large scenes,
CVCS and CityStreet, is much lower. On CVCS, compared
with all other methods, our proposed method achieves the
best performance. The proposed method shares the same
backbone model with the MVDet method (Hou, Zheng, and
Gould 2020), but our overall performance is better than
MVDet, which shows the effectiveness of the proposed
method. SHOT uses an extra multi-height projection and
works well when calibration errors of the dataset are rela-
tively small as in CVCS, and it performs much worse on
CityStreet due to CityStreet having larger calibration er-
rors, causing extra difficulties for the multi-height fusion.
3DROM is better than our method on CityStreet because
it is a data augmentation method that deals with the data
lacking issue better. But 3DROM works badly on CVCS be-
cause CVCS is already a very large dataset containing var-
ious camera and scene variations. On CityStreet, the pro-
posed method (using VGG as the backbone) also achieves
the second-best performance according to F1_score metric,

Dataset Method MODA MODP P. R. FI.
CcvVes Supervis‘ed 46.2 784 81.2 59.1 68.4
Unsupervised 45.8  73.6 86.7 54.1 66.63
CityStreet Supervis.ed 550 70.0 814 71.2 76.0
Unsupervised 49.5  67.1 78.3 68.5 73.1

Table 4: The ablation study on whether the view-wise con-
tribution weighted fusion is supervised or unsupervised.

Num. | MODA MODP Precision Recall F1_score
3 37.1 73.4 70.7 62.1 66.1
5 46.2 78.4 81.2 59.1 68.4
7 50.5 76.6 90.1 56.8 69.7
9 50.3 78.3 92.5 54.7 68.8

Table 5: The ablation study on the variable testing camera
number (3, 5, 7, 9) of the proposed method on the CVCS
dataset, which is trained on 5 camera views.

which is better than SHOT (Song et al. 2021), MVDeTr
(Hou and Zheng 2021) and MVDet (Hou, Zheng, and Gould
2020). In addition, MVDeTr utilizes deformable transformer
modules, which are relatively easy to learn on small dataset-
s. However, on large datasets like CVCS with a high number
of camera views that keep changing during training, it has d-
ifficulty stabilizing the weight learning process, limiting its
detection performance

Overall, the proposed supervised view-wise contribution
weighting method achieves the best average rank (Avg.
Rank) among all methods. The reason is the view-wise
ground-plane supervision provides more clues for the peo-
ple locations of each view, and thus the multi-view fusion
performance is more stable and better than other methods.
We also show the visualization result on CVCS dataset in
Figure 5, where the first 3 rows are the multi-view inputs,
the proposed method’ single-view predictions, and the view
weight maps, indicating accurate people ground locations.

Ablation study

With/without the supervised view-wise contribution
weighted fusion. The first ablation study is on the effec-
tiveness of the proposed supervised view-wise contribution
weighted fusion. As shown in Table 3, no matter which
backbone is used, the model with the supervised view-wise



Dataset Wildtrack MultiviewX

Method MODA MODP Precision Recall F1_score | MODA MODP Precision Recall F1 _score
RCNN (Xu et al. 2016) 11.3 18.4 68 43 52.7 18.7 464 63.5 43.9 51.9
POM-CNN (Fleuret et al. 2007) 232 305 75 55 63.5 - - - - -
DeepMCD (Chavdarova and Fleuret 2017) 67.8 642 85 82 83.5 70.0 73.0 85.7 83.3 84.5
DeepOcc. (Baqué, Fleuret, and Fua 2017) 74.1 5338 95 80 86.9 752 547 97.8 80.2  88.1
Volumetric (Iskakov et al. 2019) 88.6 73.8 95.3 932 94.2 842 80.3 97.5 86.4 91.6
MVDet (Hou, Zheng, and Gould 2020) 882 75.7 94.7 93.6 94.1 839 79.6 96.8 86.7 91.5
SHOT (Song et al. 2021) 90.2 76.5 96.1 94.0 95.0 88.3 82.0 96.6 91.5 94.0
MVDeTr (Hou and Zheng 2021) 91.5 82.1 97.4 94.0 95.7 937 913 99.5 94.2 97.8
3DROM (Qiu et al. 2022) 93,5 759 97.2 96.2 96.7 95.0 849 99.0 96.1 97.5
Ours(ft) 739 724 86.8 87.2 87.0 81.1 77.2 95.0 85.6 90.1
Ours(ft+da) 789 73.6 88.7 90.4 89.5 838 765 97.1 86.4 91.4

Table 6: Comparison of the multi-view people detection performance on Wildtrack and MultiviewX using 5 metrics. All com-
parison methods train and test on Wildtrack or MultiviewX (single scene), while ours (cross scene) are trained on CVCS and
tested on Wildtrack or MultiviewX (‘Ours(ft)’) or with the domain adaptation technique (‘Ours(ft+da)’).

contribution weighted fusion achieves better overall perfor-
mance than the model without using it, which demonstrates
the proposed approach’s effectiveness.

Supervised/unsupervised view-wise contribution
weighted fusion. The second ablation study is on whether
the view-wise contribution weighted fusion module is
supervised or unsupervised. As shown in Table 4, on both
CVCS and CityStreet datasets, the supervised view-wise
contribution weighted fusion achieves better results than
the unsupervised one. The reason is the supervised one
provides extra guidance for each view and it’s beneficial for
better multi-view fusion results. Note that the supervision
for each view is obtained from the scene-level ground-truth,
and no extra labeling efforts are required.

Variable camera number. The fourth ablation study is
on the variable camera number in the testing stage. To gen-
eralize the model to novel new scenes requires that the mod-
el can be applied to variable camera view number inputs,
because real testing scenes may contain different number-
s of camera views. The proposed method is trained on 5-
camera-view inputs on CVCS dataset (Zhang, Lin, and Chan
2021) while tested on variable camera view number inputs,
namely 3, 5, 7, and 9. Note that the ground-truth for each
testing setting is the people captured by the variable camera
views. As shown in Table 5, while the camera view number
is increased from 3 to 9, the MODA, MODP, and Precision
metrics are also generally increasing, while the Recall met-
ric is decreasing. The reason is, that when the camera view
number is increased, the model can detect more TP cases
with higher accuracy. But increasing the camera view num-
ber also means more people need to be detected (ground-
truth people number increases), which causes more FN cas-
es, too, and thus the Recall metric decreases. But overall, the
F1_score is stable (decreases a little), which shows the mod-
el is relatively stable across camera view number changes.

Generalization to new scenes. We show the cross-scene
performance of the proposed method on Wildtrack and Mul-
tiviewX in Table 6, which is trained on the large dataset
CVCS. We first finetuning the trained model on Wildtrack
and MultiviewX by using 5% of the new scene training
set images (‘Ours(ft)’), then use a domain adaptation ap-

proach (Tzeng et al. 2017) to reduce the domain gap be-
tween source and target scenes and further improve the per-
formance (‘Ours(ft+da)’). From Table 6, ‘Ours(ft)’ already
outperforms 4 comparison methods which use 100% train-
ing set data and tested on the same single scene: RCNN (X-
u et al. 2016), POM-CNN (Fleuret et al. 2007), DeepMCD
(Chavdarova and Fleuret 2017), DeepOcc. (Baqué, Fleuret,
and Fua 2017). With the domain adaptation approach, the
target and source domain gap is reduced and the cross-scene
performance is further improved on both datasets. On Multi-
viewX (larger crowd number than Wildtrack), *Ours(ft+da)’
achieves close performance to the state-of-the-art method-
s MVDet (Hou, Zheng, and Gould 2020) and Volumetric
(Iskakov et al. 2019). Compared to the rest methods, the
proposed method’s cross-scene performance with unsuper-
vised domain adaptation (‘Ours(ft+da)’) is relatively worse,
but considering that our method uses only 5% of the testing
scenes labels, it can achieve very close to the performance
of other state-of-the-art methods using 100% training set
data and testing on the same single scenario, the proposed
method’s result is still promising.

Discussion and Conclusion

In this paper, we present a novel supervised view-wise con-
tribution weighting approach for multi-view people detec-
tion in large scenes. We evaluate its performance on large
multi-view datasets, which is a departure from the typi-
cal approach of using small single-scene datasets. We have
demonstrated that our proposed method performs better on
larger and more complicated scenes, and achieves promising
cross-scene multi-view people detection performance com-
pared with existing state-of-the-art techniques trained on s-
ingle scenes. To our knowledge, this is the first study on
the large-scene multi-view people detection task. Our pro-
posed method extends the applicability of multi-view peo-
ple detection to more practical scenarios, making it a valu-
able tool for various applications in the fields of computer
vision, surveillance, and security. Limitations: The adopt-
ed domain transferring method is simple but limited by the
image style transferring a lot, and a stronger domain trans-
ferring module could be our future work.
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