People Counting Data for PETS 2009 dataset

Antoni Chan (abchan - AT - ucsd.edu) Department of Computer Science, City University of Hong Kong

Nuno Vasconcelos (nuno - AT - ece.ucsd.edu) Dept. of Electrical and Computer Engineering, University of California, San Diego

March 18, 2014

This archive contains the feature and count data used in [1] for crowd counting on the PETS 2009 dataset. It also contains the segmentations and ground-truth annotations. Most of the files are formatted in a similar way to the UCSD datasets. You can find more information on the method in [1, 2, 3], or online at [5, 6, 7]. If you use this data, please cite [1]. The original PETS video data is available at [4].

1 Feature and Count Data

The feature and count data (used for count regression) are located in the **features** directory. Data for the following 6 videos is available:

index	video name
1	S1.L1 13-57
2	S1.L1 13-59
3	$S1.L1 \ 14-03 \ (first \ 200 \ frames)$
4	S1.L1 14-03 (remaining frames)
5	S1.L2 14-06
6	S1.L3 14-17

The data is separated into different MATLAB files by region-of-interest (R0, R1, R2), and each file contains the feature vectors, counts, and evaluation set (training and test set) for that region-of-interest:

file	description
pets2009_R0_feats.mat	features and counts for R0 region
$pets2009_R1_feats.mat$	features and counts for R1 region
$pets2009_R2_feats.mat$	features and counts for R2 region

Here is a detailed description of the contents of each file:

dirs{j}	the name for direction j.
fv{j}{v}	[30 x nv] matrix of feature vectors for direction j in video v. nv is
	the number of frames in video v. each column is a feature vector.
$cnt{j}{v}$	[1 x nv] matrix of true counts for direction j in video v.
$evalsets{n}$	set of training/test frames for evaluation. Each cell uses a different
	video as the test set.
$evalsets{n}.trainset$	video indices for the training set.
$evalsets{n}.testset$	video index for the test set.
$evalsets{n}.loghyper{j}$	the log hyperparameters learned in [1] for direction j.
vids{v}	name of video v
$locs{j}{v}$	raw locations used for ground-truth data for direction j in video v.
	Each entry contains the people coordinates in one frame. Every 5
	frames were marked, and the counts in other frames were interpolated
	from these.

The feature vector is described in the next section. See [1] for more information about the evaluation sets and ground-truth annotations.

1.1 Features

The features were extracted from the corresponding motion segments in the video, using the provided region-of-interest and density maps (see next section). The following table lists contents of the feature vector used.

	feature description	feature dimension
	segment area	1
segment	segment perimeter	2
	perimeter orientation histogram (90 degrees)	3
	perimeter orientation histogram (120 degrees)	4
	perimeter orientation histogram (150 degrees)	5
	perimeter orientation histogram (0 degrees)	6
	perimeter orientation histogram (30 degrees)	7
	perimeter orientation histogram (60 degrees)	8
	perimeter-area ratio	9
	Blob count	10
	internal edge length	11
	internal edge orientation histogram (90 degrees)	12
	internal edge orientation histogram (120 degrees)	13
edge	internal edge orientation histogram (150 degrees)	14
	internal edge orientation histogram (0 degrees)	15
	internal edge orientation histogram (30 degrees)	16
	internal edge orientation histogram (60 degrees)	17
	Minkowski dimension of internal edges	18
	GLCM energy (0 degrees)	19
	GLCM homogeneity (0 degrees)	20
	GLCM entropy (0 degrees)	21
texture	GLCM energy (45 degrees)	22
	GLCM homogeneity (45 degrees)	23
	GLCM entropy (45 degrees)	24
	GLCM energy (90 degrees)	25
	GLCM homogeneity (90 degrees)	26
	GLCM entropy (90 degrees)	27
	GLCM energy (135 degrees)	28
	GLCM homogeneity (135 degrees)	29
	GLCM entropy (135 degrees)	30

It is advised to normalize each dimension of the feature vector to have zero mean and unit variance. The normalization parameters should be calculated from the training set only.

1.2 Example Experiments

The archive includes a MATLAB script run_experiment_pets2009.m for running the experiments from [1]. This script requires the utility functions from features archive of the UCSD dataset. The code also uses the GPML toolbox [8] for learning the GP regression function (results here use version 3.2). Counting results on all the videos are summarized below. Results differ slightly from [1] due to a small change in handling redundant features. Note that the total here means the total count, by summing up the left and right predictions.

		total		right		left	
video	region	error	MSE	error	MSE	error	MSE
S1.L1 13-57	R0	2.3077	8.3620	0.2489	0.3394	2.4751	8.9548
S1.L1 13-57	$\mathbf{R1}$	1.6968	5.0000	0.0995	0.0995	1.6425	4.7195
S1.L1 13-57	R2	1.0724	1.7421	0.2353	0.3167	0.8597	1.5385
S1.L1 13-59	R0	1.6473	4.0871	1.6680	4.1577	0.1535	0.1535
S1.L1 13-59	$\mathbf{R1}$	0.6846	1.1162	0.5892	0.8714	0.0954	0.0954
S1.L1 13-59	R2	1.2822	2.5768	1.2905	2.4357	0.0664	0.0664
S1.L2 14-06	R1	4.3284	44.1592	4.3383	44.1592	0.0050	0.0050
S1.L2 14-06	R2	3.1542	26.1592	3.1841	26.5970	0.0249	0.0348
S1.L3 14-17	R1	0.6044	1.2198	0.6044	1.1978	0.0000	0.0000

Table 1: Counting results on PETS2009 using [1]

2 Segmentations

The segmentations are in the **segm/pets2009** directory. The segmentations are saved as directories of png images.

Name	Description
segm/pets2009/S1L1-13-57.segm	Segmentation for S1.L1 13-57
<pre>segm/pets2009/S1L1-13-59.segm</pre>	Segmentation for S1.L1 13-59
<pre>segm/pets2009/S1L1-14-03a.segm</pre>	Segmentation for S1.L1 14-03 (first 200 frames)
<pre>segm/pets2009/S1L1-14-03b.segm</pre>	Segmentation for S1.L1 14-03 (remaining frames)
<pre>segm/pets2009/S1L2-14-06.segm</pre>	Segmentation for S1.L2 14-06
<pre>segm/pets2009/S1L3-14-17.segm</pre>	Segmentation for S1.L3 14-17

3 Ground-truth annotations

The ROI and density maps are provided in the gt/pets2009 directory. The format is the same as those in the UCSD annotations.

4 Acknowledgments

This research was funded by US National Science Foundation Award IIS-0534985 and CCF-0830535, NSF IGERT Award DGE-0333451.

5 History

- 2014/03/18 added ground-truth count for R2 of S1.L3 14-17. Originally, there was no ground-truth counts annotated for R2 in video S1.L3 14-17 because it was not evaluated in the PETS 2009 workshop. The ground-truth for R2 has been generated from the people locations in R0.
- 2013/02/28 initial version

References

- A. B. Chan, M. Morrow, and N. Vasconcelos, "Analysis of Crowded Scenes using Holistic Properties," in 11th IEEE Intl. Workshop on Performance Evaluation of Tracking and Surveillance (PETS 2009), Miami, Jun 2009.
- [2] A. B. Chan, Z. S. J. Liang, and N. Vasconcelos, "Privacy Preserving Crowd Monitoring: Counting People without People Models or Tracking," In *IEEE Conference on Computer Vision and Pattern Recognition*, June 2008.
- [3] A. B. Chan and N. Vasconcelos, "Counting People with Low-Level Features and Bayesian Regression," *IEEE Trans. on Image Processing*, vol. 21(4), pp. 2160-77, April 2012.
- [4] http://www.cvg.rdg.ac.uk/PETS2009/
- [5] http://www.svcl.ucsd.edu/projects/crowds
- [6] http://www.svcl.ucsd.edu/projects/peoplecnt
- [7] http://visal.cs.cityu.edu.hk/research/peoplecnt/
- [8] http://www.gaussianprocess.org/gpml/code/